Basic Structures: Sets,

 Functions, Sequences, Sums, and Matrices
Chapter 2

With Question/Answer Animations

Chapter Summary

- Sets
- The Language of Sets
- Set Operations
- Set Identities
- Functions
- Types of Functions
- Operations on Functions
- Computability
- Sequences and Summations
- Types of Sequences
- Summation Formulae
- Set Cardinality
- Countable Sets
- Matrices

Functions

Section 2.3

Section Summary

- Definition of a Function.
- Domain, Codomain
- Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling, Factorial
- Partial Functions (not in syllabus)

Functions

Let A and B be nonempty sets.
A function or mapping f from A to B, denoted $f: A \rightarrow B$, is an assignment of each $a \in A$ to exactly one $b \in B$.
We write $f(a)=b$ or $f: a \mapsto b$.

- Each student is mapped to a particular grade.

Functions

- A function $f: A \rightarrow B$ can also be defined as a relation (a subset of $A \times B$) where no two elements of the relation have the same first element.
- In other words, there is one and only one ordered pair (a, b) for every element $a \in A$:

$$
\forall x[x \in A \rightarrow \exists!y[y \in B \wedge(x, y) \in f]]
$$

Functions

Given a function $f: A \rightarrow B$

- A is the domain.
- B is the codomain.

- If $f(a)=b$, then
- b is the image of a under f;
- a is the preimage of b.
- $f(\boldsymbol{A})$, the range of f, is the set of all images.
- Two functions are equal when they
- have the same domain A and codomain B
- map each element of A to the same element of B.

Representing Functions

Functions may be specified in different ways, e.g.,

- An explicit statement or diagram of the assignment. Students and grades example.
- A formula.

$$
f(x)=x+1
$$

- A computer program.

A Java program that when given $n \in \mathbf{Z}$, produces the $n^{\text {th }}$ Fibonacci Number (sect 2.4 and also Chapter 5).

Questions

$$
f(a)=? \quad z
$$

$A \quad B$
The image of d is ? z
The domain of f is ? A
The codomain of f is? B
(a) ©

The preimage of y is ? b
$f(A)=? \quad\{y, z\}$
The preimage(s) of z is (are) ?
$\{a, c, d\}$

Question on Functions and Sets

- If $f: A \rightarrow B$ and S is a subset of A , then

$$
\begin{aligned}
& f(S)=\{f(s) \mid s \in S\} \\
& f\{\mathrm{a}, \mathrm{~b}, \mathrm{c},\} \text { is ? }\{\mathrm{y}, \mathrm{z}\} \\
& f\{\mathrm{c}, \mathrm{~d}\} \text { is ? }
\end{aligned}
$$

Injections

Definition: A function f is one-to-one, or injective:

$$
\text { if } \forall a, b \in A, f(a)=f(b) \rightarrow a=b
$$

A function is an injection if it is one-to-one.

Surjections

Definition: A function f from A to B is onto or surjective, if $\forall b \in B, \exists a \in A$ with $f(a)=b$.
Or equivalently:
Is every $b \in B$ an image?
Do range and codomain coincide?
Does $f(A)=B$?
A function f is a surjection if it is onto.

Bijections

Definition: A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).

Bijections: non-examples

Not onto. Why?

Not injective. Why?

Showing that f is one-to-one or onto

Suppose that $f: A \rightarrow B$.
To show that f is injective Show that if $f(x)=f(y)$ for arbitrary $x, y \in A$ with $x \neq y$, then $x=y$.
To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and $f(x)=f(y)$.
To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x)=y$.
To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Determining whether f is 1-1/onto

Let $f:\{a, b, c, d\} \rightarrow\{1,2,3\}$ defined by

$$
f(a)=3, f(b)=2, f(c)=1, f(d)=3
$$

Is f_{1-1} ?
Solution: No, f is not $1-1$ since $\mathrm{f}(a)=f(d)=3$.
In fact, just noting cardinalities of domain \& codomain, we know that the function is not $1-1$. (why?)
This is an instance of the pigeonhole principle that we encountered earlier.

Determining whether f is 1-1/onto

Let $f:\{a, b, c, d\} \rightarrow\{1,2,3\}$ defined by

$$
f(a)=3, f(b)=2, f(c)=1, f(d)=3
$$

Is f an onto function?
Solution: Yes, f is onto since all three elements of the codomain are images of elements in the domain.
If the codomain were changed to $\{1,2,3,4\}, f$ would not be onto. (why?)

Determining whether f is 1-1/onto

Is $f: \mathrm{R} \rightarrow \mathrm{R}, f: x \mapsto x^{2}$ onto?
Solution: No, f is not onto because there is no real number x with $x^{2}=-1$, for example.
How can we restrict the codomain so that f is onto?
Solution: (works in general) Restrict the codomain to be the image of the domain, i.e., let codomain $=\mathbf{R}^{+} \cup\{0\}$.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the inverse of f, denoted f^{-1}, is the function from B to A defined as $\quad f^{-1}(y)=x$ iff $f(x)=y$
No inverse exists unless f is a bijection. Exercise: Why?

Inverse Functions

Questions

Example 1: Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$. Is f invertible and if so what is its inverse?

Solution: f is invertible because it is a bijection.
f^{1} reverses the correspondence given by f, so

$$
f^{-1}(1)=c, \quad f^{-1}(2)=a, f^{-1}(3)=b .
$$

Questions

Example 2: Let $f: \mathbf{Z} \rightarrow \mathbf{Z}, f: x \mapsto x+1$. Is f invertible, and if so, what is its inverse?

Solution: f is invertible because it is a bijection.
The inverse function f^{-1} reverses the correspondence so

$$
f^{-1}(y)=y-1 .
$$

Questions

Example 3: Let $f: \mathbf{R} \rightarrow \mathbf{R}, f: x \mapsto x^{2}$ Is f invertible, and if so, what is its inverse?
Solution: f is not invertible because it is not 1-1.
It is also not onto.

- The lack of ontoness can be solved by restricting the codomain to the functions image: $\mathbf{R}^{+} \cup\{0\}$.
- To achieve 1-1 ness, we restrict the domain to
- $\mathbf{R}^{+} \cup\{0\}$ or $\mathbf{R}^{-} \cup\{0\}$,
- The resulting inverse functions are the positive and negative branches of the square root function, respectively.
- Visually, the 2 branches each satisfy the Vertical (for function) and horizontal (for 1-1) line tests.

Composition

- Definition: Let $f: B \rightarrow C, g: A \rightarrow B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by

$$
f \circ g(x)=f(g(x))
$$

Composition

Note: range of g must be within the domain of f, i.e., $G(A) \subseteq B$, where B is the domain of f.

Composition

Composition

Example 1: If $f(x)=x^{2}$ and $g(x)=2 x+1$, then

$$
f(g(x))=(2 x+1)^{2}
$$

and

$$
g(f(x))=2 x^{2}+1
$$

We can conclude that composition in general is not commutative.

Composition Questions

Example 1: Let $g:\{a, b, c\} \rightarrow\{a, b, c\}$ such that

$$
g(a)=b, g(b)=c, \text { and } g(c)=a .
$$

Let $f:\{a, b, c\} \rightarrow\{1,2,3\}$ such that

$$
f(a)=3, f(b)=2, \text { and } f(c)=1 .
$$

What is $f \circ g$ and g of?
Solution: The composition $f \circ g$ is defined by
$f \circ g(a)=f(g(a))=f(b)=2$.
$f \circ g(b)=f(g(b))=f(c)=1$.
$f \circ g(c)=f(g(c))=f(a)=3$.
g of not defined (range f is not contained in domain g).

Composition Questions

Example 2: Let $f, g: \mathrm{Z} \rightarrow \mathrm{Z}$ defined by $f(x)=2 x+3$ and $g(x)=3 x+2$.
What is $f \circ g$ and $g \circ f$?

Solution:

$f \circ g(x)=f(g(x))=f(3 x+2)=2(3 x+2)+3=6 x+7$
$g \circ f(x)=g(f(x))=g(2 x+3)=3(2 x+3)+2=6 x+11$

Again, note how composition is non-commutative in general.

Graphs of Functions

- Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a, b) \mid a \in A$ and $f(a)=b\}$.

Graph of $f(n)=2 n+1$ from N to Z^{+}

Graph of $f(x)=x^{2}$
from Z to N

Some Important Functions

- The floor function, denoted

$$
f(x)=\lfloor x\rfloor
$$

is the largest integer less than or equal to x.

- The ceiling function, denoted

$$
f(x)=\lceil x\rceil
$$

is the smallest integer greater than or equal to x.
Examples: $\lceil 3.5\rceil=4 \quad\lfloor 3.5\rfloor=3$

$$
\lceil-1.5\rceil=-1 \quad\lfloor-1.5\rfloor=-2
$$

Floor and Ceiling Functions

(a) $y=[x]$

(b) $y=[x]$

Graph of (a) Floor and (b) Ceiling Functions

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor

 and Ceiling Functions.(n is an integer, \boldsymbol{x} is a real number)
(1a) $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$
(1b) $\lceil x\rceil=n$ if and only if $n-1<x \leq n$
(1c) $\lfloor x\rfloor=n$ if and only if $x-1<n \leq x$
(1d) $\lceil x\rceil=n$ if and only if $x \leq n<x+1$
(2) $x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$
(3a) $\lfloor-x\rfloor=-\lceil x\rceil$
(3b) $\lceil-x\rceil=-\lfloor x\rfloor$
(4a) $\lfloor x+n\rfloor=\lfloor x\rfloor+n$
(4b) $\lceil x+n\rceil=\lceil x\rceil+n$

Proving Properties of Functions

Example: Prove that x is a real number, then

$$
\lfloor 2 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 2\rfloor
$$

Solution: Let $x=n+\varepsilon$, where n is an integer and $0 \leq \varepsilon<1$.
Case 1: $\varepsilon<1 / 2$

- $2 x=2 n+2 \varepsilon$ and $[2 x]=2 n$, since $0 \leq 2 \varepsilon<1$.
- $[x+1 / 2]=n$, since $x+1 / 2=n+(1 / 2+\varepsilon)$ and $0 \leq 1 / 2+\varepsilon<1$.
- Hence, $\lfloor 2 x\rfloor=2 n$ and $\lfloor x\rfloor+\lfloor x+1 / 2\rfloor=n+n=2 n$.

Case 2: $\varepsilon \geq 1 / 2$

- $2 x=2 n+2 \varepsilon=(2 n+1)+(2 \varepsilon-1)$ and $[2 x]=2 n+1$, since $0 \leq 2 \varepsilon-1<1$.
- $\lfloor x+1 / 2\rfloor=\lfloor n+(1 / 2+\varepsilon)\rfloor=\lfloor n+1+(\varepsilon-1 / 2)\rfloor=n+1$ since $0 \leq \varepsilon-1 / 2<1$.
- Hence, $[2 x\rfloor=2 n+1$ and $[x]+\lfloor x+1 / 2\rfloor=n+(n+1)=2 n+1$.

Factorial Function

Definition: $f: \mathbf{N} \rightarrow \mathbf{Z}^{+}$, denoted by $f(n)=n!$ is the product of the first n positive integers (or 1 , if $\mathrm{n}=0$).

$$
\begin{aligned}
& f(n)=1 \cdot 2 \cdots(n-1) \cdot n \\
& f(0)=0!=1
\end{aligned}
$$

Examples:

Stirling's Formula:

$$
\begin{gathered}
n!\sim \sqrt{2 \pi n}(n / e)^{n} \\
f(n) \sim g(n) \doteq \lim _{n \rightarrow \infty} f(n) / g(n)=1
\end{gathered}
$$

$$
\begin{aligned}
& f(1)=1!=1 \\
& f(2)=2!=1 \cdot 2=2 \\
& f(6)=6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720 \\
& f(20)=2,432,902,008,176,640,000
\end{aligned}
$$

