Basic Structures: Sets,

 Functions, Sequences, Sums, and Matrices
Chapter 2

With Question/Answer Animations

Chapter Summary

- Sets
- The Language of Sets
- Set Operations
- Set Identities
- Functions
- Types of Functions
- Operations on Functions
- Computability
- Sequences and Summations
- Types of Sequences
- Summation Formulae
- Set Cardinality
- Countable Sets
- Matrices
- Matrix Arithmetic

Set Operations

Section 2.2

Section Summary

- Set Operations
- Union
- Intersection
- Complementation
- Difference
- More on Set Cardinality
- Set Identities
- Proving Identities
- Membership Tables

Boolean Algebra

- Propositional calculus and set theory are both instances of Boolean Algebra (discussed in Chapter 12, but NOT formally part of either MAT 2440 or 2540).
- The operators in set theory are analogous to the corresponding operator in propositional calculus.
- As always there must be a universal set U. All sets are assumed to be subsets of U.

Union

- Definition: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set:

$$
\{x \mid x \in A \vee x \in B\}
$$

- Example: What is $\{1,2,3\} \cup\{3,4,5\}$?

$$
\text { Solution: }\{1,2,3,4,5\} \quad \text { Venn Diagram for } A \cup B
$$

Intersection

- Definition: The intersection of sets A and B, denoted by $A \cap B$, is

$$
\{x \mid x \in A \wedge x \in B\}
$$

- If intersection is empty, then A and B are disjoint (also mutually exclusive).
- Example: What is $\{1,2,3\} \cap\{3,4,5\}$?

Solution: $\{3\}$

- Example: $\{1,2,3\} \cap\{4,5,6\}=$?

Solution: \varnothing
Venn Diagram for $A \cap B$

Difference

- Definition: Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing the elements of A that are not in B.

$$
A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}
$$

- Example: What is $\{1,2,3\}-\{3,4,5\}$?

Venn Diagram for $A-B$

Complement

Definition: If A is a set, then the complement of A (with respect to U), denoted by \bar{A} is the set $U-A$

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

(The complement of A is sometimes denoted by A^{c}.)
Example: If $U=\mathrm{R}$, find complement of $\{x \mid x>70\}$.
Solution: $\{x \mid x \leq 70\}$
Venn Diagram for Complement

Symmetric Difference

Definition: The symmetric difference of \mathbf{A} and \mathbf{B}, denoted by $A \oplus B$ is the set

$$
(A-B) \cup(B-A)
$$

Example:

$A=\{1,2,3,4,5\} \quad B=\{4,5,6,7,8\}$ What is $A \oplus B$?

- Solution: $\{1,2,3,6,7,8\}$

Venn Diagram

Example: $U=\{0,1,2,3,4,5,6,7,8,9,10\} \quad A=\{1,2,3,4,5\}, \quad B=\{4,5,6,7,8\}$

1. $A \cup B$

Solution: $\{1,2,3,4,5,6,7,8\}$
2. $A \cap B$

Solution: $\{4,5\}$
3. \bar{A}

Solution: $\{0,6,7,8,9,10\}$
4. \bar{B}

Solution: $\{0,1,2,3,9,10\}$
5. $A-B$

Solution: $\{1,2,3\}$
6. $B-A$

Solution: $\{6,7,8\}$
7. $A \oplus B$

Solution: $\{1,2,3,6,7,8\}$

Cardinality of the Union of Two Sets

- Inclusion-Exclusion
$|A \cup B|=|A|+|B|-|A \cap B|$

Venn Diagram for $A, B, A \cap B, A \cup B$

Example:

- Let $A=$ math majors and $B=$ CS majors.
- To count \#students who are either math or CS majors:
- add \#math majors and \#CS majors
- subtract \#joint CS/math majors.

Inclusion-Exclusion for 3 sets

$|A \cup B \cup C|=|A|+|B|+|C|$
$-|A \cap B|-|A \cap C|-|B \cap C|$
$+|A \cap B \cap C|$

Set Identities (1 of 3)

- Identity laws

$$
A \cup \emptyset=A \quad A \cap U=A
$$

- Domination laws

$$
A \cup U=U \quad A \cap \emptyset=\emptyset
$$

- Idempotent laws

$$
A \cup A=A \quad A \cap A=A
$$

- Complementation law

$$
\overline{(\bar{A})}=A
$$

Continued on next slide \rightarrow

Set Identities (2 of 3)

- Commutative laws

$$
A \cup B=B \cup A \quad A \cap B=B \cap A
$$

- Associative laws

$$
\begin{aligned}
& A \cup(B \cup C)=(A \cup B) \cup C \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

- Distributive laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Continued on next slide \rightarrow

Set Identities (3 of 3)

- De Morgan's laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

- Absorption law

$$
A \cup(A \cap B)=A \quad A \cap(A \cup B)=A
$$

- Complement laws

$$
A \cup \bar{A}=U \quad A \cap \bar{A}=\emptyset
$$

Ways to Prove Set Identities

1. Show each set (side of the identity) is subset of other.
2. Use set builder notation and propositional logic.
3. Membership Tables:

- Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity.
- Use 1 to indicate it is in the set and a 0 to indicate that it is not.

$2^{\text {nd }}$ De Morgan Law: containment

Example: Prove that $\quad \overline{A \cap B}=\bar{A} \cup \bar{B}$

Solution: We prove this identity by showing that:

1) $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and
2) $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$2^{\text {nd }}$ De Morgan Law: containment

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$x \in \overline{A \cap B}$
$x \notin A \cap B$
$\neg((x \in A) \wedge(x \in B))$
$\neg(x \in A) \vee \neg(x \in B)$
$x \notin A \vee x \notin B$
$x \in \bar{A} \vee x \in \bar{B}$
$x \in \bar{A} \cup \bar{B}$

by assumption defn. of complement
defn. of intersection 1st De Morgan Law for Prop Logic defn. of negation defn. of complement defn. of union

$2^{\text {nd }}$ De Morgan Law: containment

These steps show that:
 $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A \cap B) \\
& x \in \overline{A \cap B}
\end{aligned}
$$

by assumption
defn. of union
defn. of complement
defn. of negation
by 1st De Morgan Law for Prop Logic defn. of intersection
defn. of complement

$2^{\text {nd }}$ De Morgan Law: Set-Builder Notation

 $\overline{A \cap B}$$=\{x \mid x \notin A \cap B\}$
$=\{x \mid \neg(x \in(A \cap B))\}$
$=\{x \mid \neg(x \in A \wedge x \in B\}$
$=\{x \mid \neg(x \in A) \vee \neg(x \in B)\}$
$=\{x \mid x \notin A \vee x \notin B\}$
$=\{x \mid x \in \bar{A} \vee x \in \bar{B}\}$
$=\{x \mid x \in \bar{A} \cup \bar{B}\}$
$=\bar{A} \cup \bar{B}$
by defn. of complement
by defn. of does not belong symbol
by defn. of intersection
by 1st De Morgan law
for Prop Logic
by defn. of not belong symbol
by defn. of complement
by defn. of union
by meaning of notation
distributive law: Membership Table

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	O	o	1	1	1	1
1	0	1	0	1	1	1	1
1	0	O	o	1	1	1	1
0	1	1	1	1	1	1	1
0	1	O	0	o	1	O	o
0	0	1	0	0	O	1	0
O	0	o	o	o	O	o	o

Generalized Unions

Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets.
We define:

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

This is well-defined, since union is associative.

- For $i=1,2, \ldots$, let $A_{\mathrm{i}}=\{i, i+1, i+2, \ldots$.$\} . Then$

$$
\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n}\{i, i+1, i+2, \ldots\}=\{1,2,3, \ldots\}
$$

Generalized Intersections

Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets.
We define:

$$
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{n}
$$

This is well-defined, since intersection is associative.

- For $i=1,2, \ldots$, let $A_{\mathrm{i}}=\{i, i+1, i+2, \ldots$.$\} . Then,$

$$
\bigcap_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n}\{i, i+1, i+2, \ldots\}=\{n, n+1, n+2, \ldots . .\}=A_{n}
$$

