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Section Summary
 Mathematical Proofs

 Forms of Theorems

 Direct Proofs

 Indirect Proofs

 Proof of the Contrapositive

 Proof by Contradiction



Proofs of Mathematical Statements
proof : valid argument that establishes truth of statement.

In math & CS, informal proofs (sh0rt) are generally used.

 More than one rule of inference are often used in a step. 

 Steps may be skipped.

 Rules of inference used, are not explicitly stated. 

 Easier to understand 

 Easier to explain

 But it is easy to introduce errors!



Proofs of Mathematical Statements
Proofs have several practical applications:

 verification that computer programs are correct 

 establishing that operating systems are secure 

 enabling programs to make inferences in artificial 
intelligence 

 showing that system specifications are consistent



Terminology
 A theorem is a statement that can be shown to be true using:

 definitions

 other theorems

 axioms (statements which are given as true) 

 rules of inference

 A lemma is a ‘helping theorem’ or a result which is needed to 
prove a theorem.

 A corollary is a result which follows directly from a theorem.

 Less important theorems are propositions. 

 A conjecture is a statement that is proposed.
 Once a proof of a conjecture is found, it becomes a theorem. 

 On the other hand, it can turn out to be false!



Forms of  Theorems 
 Many theorems assert that a property holds for all 

elements in a domain, which could be

 a set of numbers: Z, R, Q, R\Q

 some discrete structure that we study in the course

 Often (needed for a precise statement) is omitted

 For example 

“If x, y ÎR and x > y, then x2 > y2 ” 

really means

“Let U = R,  x  y, if x > y, then x2 > y2 .”



Proving Theorems
 Many theorems have the logical structure:  

 To prove them, we show that where c is an arbitrary 
element of the domain, 

 By universal generalization the truth of the original 
formula follows.

 So, we must prove something of the form:  



Proving Conditional Statements: p → q
 Trivial Proof: If we know q is true, then

p → q is true as well.   

“If it is raining  then 1=1.”  

 Vacuous Proof: If we know p is false then

p → q is true as well.

“If I am both rich and poor then 2 + 2 = 5.” 

[ Even though these examples seem silly, both trivial 
and vacuous proofs are often used in mathematical 
induction, as we will see in Chapter 5) ]



Even and Odd Integers
Definition:  The integer n is

 even if k Î Z such that n = 2k

 odd if k Î Z such that n = 2k + 1. 

Note that every integer is either even or odd and no 
integer is both even and odd.

We need these basic facts about integers in the example 
proofs to follow.

We will learn more about integers in Chapter 4.



Proving Conditional Statements: p → q
Direct Proof: Assume p is true and use rules of inference, 
axioms, & logical equivalences to show that q also is true.

Example: “If n is an odd integer, then n2 is odd.”

Solution: Assume n is odd. Then n = 2k + 1 (for k Î Z). 
Squaring both sides of the equation, we get:

n2 = (2k + 1)2  = 4k2 + 4k +1 = 2(2k2 + 2k) + 1

[= 2r + 1, where r = 2k2 + 2k Î Z and so n2 is indeed odd] 
(this last line is often omitted)

(       marks the  end of  the proof. Sometimes QED is used instead. )  



Proving Conditional Statements: p → q

Definition: The real number r is rational (Q) if p, q Î Z, 
q≠0 such that r = p/q

Example: Prove “sum of two rational numbers is rational”.

Solution: Assume r and s are two rational numbers. Then 
p, q, t, u Î Z such that

Thus the sum is rational.

(As before, change of variables  to v and w may be omitted.

However, you can NOT omit noting that qu ≠ 0.)

where v = pu + qt 
w = qu ≠ 0



Proving Conditional Statements: p → q
Proof by Contraposition: Assume ¬q and show ¬p is true also. 
This is an indirect proof method.

(In reality, we are giving a direct proof of ¬q → ¬p.)

Example: Prove that if n Î Z and 3n + 2 is odd, then n is odd.

Solution: Assume n is even. So n = 2k for k Î Z. And 

3n + 2 = 3(2k) + 2 =2(3k + 1) [= 2j  for j = 3k +1]

\ 3n + 2 is even. 

[Since we showed ¬q → ¬p ,  p → q must hold as well. ]

(statements within [ ] can be omitted as before)



Proving Conditional Statements: p → q
Example: Prove that if n ÎZ, n2 is odd, then n is odd. 

Use proof by contraposition. 

Solution: Assume n is even (i.e., not odd).  Then k ÎZ

such that n = 2k. Hence,

n2 =  4k2 = 2 (2k2) 

and n2 is even (i.e., not odd).

[We have shown that if n is an even integer, then n2 is 
even. Therefore by contraposition, for an integer n

if n2 is odd, then n is odd.]



Proving Conditional Statements: p → q
Proof by Contradiction: (AKA reductio ad absurdum).  

To prove  p, assume  ¬p and derive a contradiction such as    
p ∧ ¬p (this is another indirect form of proof).

Since we have shown that ¬p →F is true , it follows that the 
contrapositive  T→p also holds.

Example: Prove that if you pick 22 days from the calendar at 
least 4 must fall on the same day of the week (this is an 
example of the pigeon principle).

Solution: Assume that no more than 3 of the 22 days fall on 
the same day of the week. Because there are 7 days of the 
week, we could only have picked 21 days at most. This 
contradicts the assumption that we have picked 22 days.



Proof by Contradiction
Example: Use proof by contradiction to show that √2 is irrational.

Solution: Suppose √2 is rational. Then there exists integers a and 
b with √2  = a /b, where b ≠  0 and a and b  have no common 
factors. Then

Therefore a2 must be even. If a2 is even then a must be even (an 
exercise). Since a is even, a = 2c  for some integer c. Thus,

Therefore b2 is even.  Again then b must be even as well.

But then 2 must divide both a and b. 

However, we assumed that a and b have no common factors 

\√2 is  irrational



Proof by Contradiction 
Example: Prove that there is no largest prime number.

Solution: Assume that there is a largest prime 
number. Call it pn. Hence, we can list all the primes 
2,3,.., pn. Form

None of the prime numbers on the list divides r. 
Therefore r is prime, but r is larger than all the known 
primes 

\ there is no largest prime. 



Theorems that are Biconditional
Statements
To prove a theorem that is a biconditional statement, 
that is, a statement of the form p ↔ q, we show that 

both p → q and q →p are true. 

Example: Prove the theorem: “If n Î Z, then n is odd if 
and only if n2 is odd.”

Solution:  We have already shown (previous slides) that 
both p →q and q →p. \p ↔ q.

Sometimes iff is used as an abbreviation for “if an only if,” as in

“If n Î Z, then n is odd iff n2 is odd.”



What is wrong with this?
“Proof” that 1 = 2

Solution: Step 5.  a - b = 0 by the premise and 
division by 0 is undefined. 



Summary and Looking Ahead
 If direct methods of proof do not work: 

 Try a proof by contraposition.

 Or a proof by contradiction.

 In section 1.8 (not part of syllabus but which you are 
encouraged to read anyway) are strategies for when 
straightforward approaches do not work.

 In Chapter 5, we will see mathematical induction and 
related techniques.

 In Chapter 6, you will find combinatorial proofs/ 
techniques: important for probability and CS. (In 2540 
Discrete Structures II will see some of it.)


