MAT 2630 Halleck Fall 2015 Practice Exam 3

REMINDER: your 2 page (front and back) 1 sheet hand-written set of formulas and notes will be 10% of your grade.
Please do as much of the exam as you can by hand. However, you may use a calculator if you need it. The actual exam will consist of questions similar to 5 of the ones that you see below. Each question will be worth 18%.

1. A) Use Lagrange interpolation to find a polynomial that passes through the points ($0,-2$), (2,1), (4,4).
B) Use Newton's divided differences to find the interpolating polynomial
(You can leave each in raw form. You do not need to check that they are equivalent.)
2. Find the one-piece Bézier curve $(x(t), y(t))$ defined by the given four points $(1,2),(1,3),(2,3),(2,2)$. Determine the points corresponding to $\mathrm{t}=.25, \mathrm{t}=.5$ and $\mathrm{t}=.75$. Use them to sketch the curve on graph paper. Use 5 boxes is one unit.
3. Use the three-point centered-difference formula for the second derivative to approximate $f^{\prime \prime}(0)$, where $f(x)=$ $\cos x$, for (a) $h=0.1$ (b) $h=0.01$ (c) $h=0.001$. Find a bound on the approximation error. Compare with the actual error.
4. Apply the composite Simpson's Rule with $\mathrm{m}=1$ and 2 panels to the integrals, and report the errors: $\int_{0}^{\pi} x \cos x d x$
5. Apply Euler's Method with step size $h=1 / 4$ to the IVP $y^{\prime}=2(t+1)^{2} y ; y(0)=1$ on the interval $[0,1]$. List the $w_{i}, i=$ $0, \ldots, 4$, and find the error at $t=1$ by comparing with the correct solution. If the step is halved, by how about much will the error decrease?
6. Apply Midpoint Method with step size $h=1 / 2$ to the IVP $y^{\prime}=2(t+1)^{2} y ; y(0)=1$ on the interval $[0,1]$. List the $w_{i}, i=$ $0, \ldots, 2$, and find the error at $t=1$ by comparing with the correct solution. If the step is halved, by how about much will the error decrease?
