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Floating-Point Anomalies

The finite precision arithmetic that digital computers are using leads to numerical errors and anomalies
simply because computers can store real numbers with finitely many digits, and irrational numbers require
infinitely many digits to be represented exactly. Only integers and rational numbers whose denominator is a
power of 2 have a finite binary representation and can therefore be stored in the computer memory exactly.
All other numbers are stored with some finite precision that leads to numerical errors.

For example, after simplifying, we get the following identity:

(x+ y)2 − 2xy − y2

x2 = 1

However, the numerical result could be quite different from 1 when x is very small and y is very large, because
then we have to divide two very small numbers and since they both come with numerical errors, the result is
a complete nonsense:

x=1e-4
y=1e4
((x+y)^2 - 2*x*y - y^2)/(x^2) # dividing two very small numbers leads to anomalies

## [1] 0

Root-finding using the Bisection Method

The bisection method is the first numerical algorithm we’ll consider for finding roots of arbitrary nonlinear
functions.

Suppose that f : R→ R is a continuous function. A root of f is a solution to the equation f(x) = 0. That is,
a root is a number x0 ∈ R such that f(x0) = 0. If we draw the graph of our function, say y = f(x), which is a
curve in the plane, a solution of f(x) = 0 is the x-coordinate of a point at which the curve crosses the x-axis.

curve(x^2-9,-4,4,col="blue",lwd=3)
grid()
abline(h=0)

1



−4 −2 0 2 4

−
5

0
5

x

x^
2 

−
 9

We can zoom in on the interval [2, 4] to find one of the roots and then we can look inside the interval [−4,−2]
to find the second root.

curve(x^2-9,2,4,col="blue",lwd=3)
grid()
abline(h=0)
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The bisection method works by first isolating an interval in which the root must lie, and then successively
refining the bounding interval in such a way that the root is guaranteed to always lie inside the interval.
More precisely, the width of the bounding interval is successively halved.

Suppose that f is a continuous function, then it is easy to see that f has a root in the interval (a, b) if either
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f(a) < 0 and f(b) > 0 or if f(a) > 0 and f(b) < 0. That is, the function must have opposite signs at the
endpoints of the interval, because only then the continuity of the function guarantees a root inside this
interval since the graph of the function must cross the x-axis at some point inside this interval.

A convenient way to verify this condition is to check if f(a)f(b) < 0 - this is equivalent to f having opposite
signs at a and b. The bisection method works by taking an interval (a, b) that contains a root, then successively
refining a and b > a until b− a ≤ δ, where δ is some predefined tolerance. Here is the bisection algorithm:

Bisection Method: Start with a < b such that f(a)f(b) < 0.

1. if b− a ≤ δ then stop, if not go to step 2.
2. let c = (a+ b)/2, if f(c) = 0 stop, otherwise go to step 3.
3. if f(a)f(c) < 0 then put b← c, otherwise put a← c.
4. go back to step 1.

Note that at every iteration of the algorithm, we know that there is root in the interval (a, b) and with every
iteration the interval is halved. Provided we start with f(a)f(b) < 0, the algorithm is guaranteed to converge.
If we stop when b− a ≤ δ, then we know that both a and b are within distance δ of a root.

For the purpose of quick development and computation, one can remove all the extra checks in the bisection
algorithm and simply work with a bare bone algorithm that does the job, provided the assumptions we make
about the function are satisfied. We do simplify the algorithm by running it only for a certain number of
steps (given a default value of 20) rather than specifying tolerance:

# bisect1 computes a root approximation of f(x) in [a,b] using bisection.
# we must have f(a)f(b)<0 and only a specified number of steps are executed.
bisect1<-function(f,a,b,steps=20){

for (n in 1:steps){
c<-(a+b)/2
if (f(a)*f(c)<0){ # if true, a and c make the new interval

b<-c
} else {

a<-c # now, c and b make the new interval
}

}
return((a+b)/2) # the midpoint is the best estimate
}

We are interested in finding a root of f(x) = cos(x) − x. We can first plot the function to locate visually
where the roots maybe hiding. Once we find an interval that contains a root, then we can apply the bisect1
function to find the root using the bisection algorithm.

f<-function(x) cos(x)-x
curve(f(x),-1,2,col="blue",lwd=2)
abline(h=0)
grid()
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We can see that a root must live in the interval [0, 1] since the graph of f appears to cross the x-axis in this
interval. We can now apply the bisection algorithm to find the root in [0, 1] with 20 steps.

## [1] 0.7391

## Check: f(root)= 6.905e-07

We can create a more sophisticated bisection algorithm with checks on the inputs and rather than specifying
a certain number of steps for the algorithm to run, we can use a while loop to stop only when a condition is
met, which will guarantee that the root was computed within certain tolerance.

bisect<- function(fun,a,b,tol = 1e-9) {
# applies the bisection algorithm to find x such that fun(x)=0 within the tolerance
# a and b must bracket a root, that is a < b and fun(a)*fun(b)< 0
# the algorithm iteratively refines a and b and terminates when b - a <= tol
# check inputs
if (a >= b) {

cat("error: left bound >= right bound \n")
return(NULL)
}

fa <- fun(a)
fb <- fun(b)
if (fa == 0) {

return(a)
} else if (fb == 0) {

return(b)
} else if (fa*fb > 0) {

cat("error: the function has the same sign at both ends \n")
return(NULL)
}

# successively refine a and b
n <- 0
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while ((b - a) > tol) {
c <- (a + b)/2
fc <- fun(c)
if (fc == 0) {

return(c)
} else if (fa*fc < 0) {

b <- c
fb <- fc
} else {

a <- c
fa <- fc
}

n <- n + 1
cat("at iteration", n, "the root lies between",a, "and",b, "\n")
}

# return (approximate) root
return((a + b)/2)
}

Here is this bisection algorithm in action.

# to find a root of fun in [1,2]
fun <- function(x) return(log(x) - exp(-x))
curve(fun,1,2,col="blue",lwd=3)
grid()
abline(h=0,lty=1)
abline(v=1.31,lty=3)
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options(digits=6)
(root<-bisect(fun, 1, 2, tol = 1e-06))
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## at iteration 1 the root lies between 1 and 1.5
## at iteration 2 the root lies between 1.25 and 1.5
## at iteration 3 the root lies between 1.25 and 1.375
## at iteration 4 the root lies between 1.25 and 1.3125
## at iteration 5 the root lies between 1.28125 and 1.3125
## at iteration 6 the root lies between 1.29688 and 1.3125
## at iteration 7 the root lies between 1.30469 and 1.3125
## at iteration 8 the root lies between 1.30859 and 1.3125
## at iteration 9 the root lies between 1.30859 and 1.31055
## at iteration 10 the root lies between 1.30957 and 1.31055
## at iteration 11 the root lies between 1.30957 and 1.31006
## at iteration 12 the root lies between 1.30957 and 1.30981
## at iteration 13 the root lies between 1.30969 and 1.30981
## at iteration 14 the root lies between 1.30975 and 1.30981
## at iteration 15 the root lies between 1.30978 and 1.30981
## at iteration 16 the root lies between 1.3098 and 1.30981
## at iteration 17 the root lies between 1.3098 and 1.30981
## at iteration 18 the root lies between 1.3098 and 1.3098
## at iteration 19 the root lies between 1.3098 and 1.3098
## at iteration 20 the root lies between 1.3098 and 1.3098

## [1] 1.3098

fun(root) # check the numerical root

## [1] 8.8216e-08

Examples Let’s find the root(s) of the cubic polynomial f(x) = x3 + x− 1 using bisection. We can first
plot the function to locate an interval that contains only one root.

f<-function(x) x^3+x-1
curve(f(x),-1,2,col="blue",lwd=3)
grid()
abline(h=0,lty=2)
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It appears the function has only one real root, inside the interval [0.5, 1]. Any polynomial of degree n must
have exactly n roots, but they can be either real or complex. In this case, the other two roots are complex.
For polynomials with real coefficients, complex roots come in complex conjugate pairs.

options(digits=4)
bisect(f,0.5,1,tol=1e-6) # compute a real root of f in [0.5,1] using bisection

## at iteration 1 the root lies between 0.5 and 0.75
## at iteration 2 the root lies between 0.625 and 0.75
## at iteration 3 the root lies between 0.625 and 0.6875
## at iteration 4 the root lies between 0.6562 and 0.6875
## at iteration 5 the root lies between 0.6719 and 0.6875
## at iteration 6 the root lies between 0.6797 and 0.6875
## at iteration 7 the root lies between 0.6797 and 0.6836
## at iteration 8 the root lies between 0.6816 and 0.6836
## at iteration 9 the root lies between 0.6816 and 0.6826
## at iteration 10 the root lies between 0.6821 and 0.6826
## at iteration 11 the root lies between 0.6821 and 0.6824
## at iteration 12 the root lies between 0.6823 and 0.6824
## at iteration 13 the root lies between 0.6823 and 0.6824
## at iteration 14 the root lies between 0.6823 and 0.6823
## at iteration 15 the root lies between 0.6823 and 0.6823
## at iteration 16 the root lies between 0.6823 and 0.6823
## at iteration 17 the root lies between 0.6823 and 0.6823
## at iteration 18 the root lies between 0.6823 and 0.6823
## at iteration 19 the root lies between 0.6823 and 0.6823

## [1] 0.6823

Numerical Accuracy of the Bisection Algorithm DEFINITION: An approximate root found by
the bisection algorithm is correct within p decimal places if the error between the actual root and the
approximate root is less than 0.5× 10−p.
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If [a, b] is the starting unit length interval, then after n bisection steps, the resulting interval [an, bn] has
length bn − an = (b− a)/2n since with every step the interval is halved. Choosing the midpoint of the final
interval xc = (an + bn)/2 gives the best estimate of the true root r, and the estimate for the root being xc is
within half the interval length of the true root r.

This means that after n steps of the Bisection Method, we have that

solution error = |xc − r| <
b− a
2n+1

Using the formual for the solution error, we can decide how many steps of bisection are required to achieve a
certain accuracy for the approximate root, based on the definition of correct to p decimal places.

For example, in order to achieve an accuracy of p = 6 decimal places, assuming that we started with a unit
interval b− a = 1, we must have:

solution error = b− a
2n+1 = 1

2n+1 ≤ 0.5× 10−6,

which gives an estimate for n (compute it yourselves):

n ≥ 19.9316,

so we can take n = 20 steps to achieve an accuracy of 6 decimal places.

QUESTION: Assuming we start with a unit interval, compute how many steps are needed for the bisection
method to get a root correct within 10 decimal places. Answer: 34

Fixed-Point Iteration

Let us apply the cos() function repeatedly to an arbitrary starting number. That is, apply the cos() function
to the starting number, then apply cos() to the result, then to the new result, and so forth. Continue until
the digits no longer change:

options(digits=5)
out <- runif(1,0,10) # 1 random number from (0,10)
for(i in 2:40) {

out[i] <- cos(out[i-1]) # repeated application of cos
}

tail(out,8)

## [1] 0.73908 0.73909 0.73908 0.73909 0.73908 0.73909 0.73909 0.73909

The resulting sequence of numbers converges to 0.73909.

In this section, our goal is to explain why this calculation, an instance of Fixed-Point Iteration (FPI),
converges.

Fixed points of a function The sequence of numbers produced by iterating the cosine function appears
to converge to a fixed number r. Subsequent applications of cosine do not change the number. For this input,
the output of the cosine function is equal to the input, or cos(r) = r.

DEFINITION The real number r is a fixed point of the function g if g(r) = r.

The number r = 0.73909 is an approximate fixed point for the function g(x) = cos(x).
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The function g(x) = x3 has three fixed points, r = −1, 0, 1.

Let’s use the Bisection Method to solve the equation cos(x)− x = 0.

f<-function(x)cos(x)-x
curve(f,0,1,col="blue",lwd=3)
abline(h=0,lty=2)
grid()
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bisect1(f,0,1,steps=30) # for loop implementation with 20 steps default

## [1] 0.73909

We can rewrite the equation cos(x)− x = 0 into a new equation cos(x) = x. A solution r of this equation is
the same thing as the fixed-point of cos(x). Solving the fixed-point equation cos(r) = r is the same problem
but from a different point of view.

When the output equals the input, that number is a fixed point of cos(x), by definition, and simultaneously a
solution of the equation cos(x)− x = 0.

Once the equation is written as g(x) = x, Fixed-Point Iteration proceeds by starting with an initial guess x0
and a repeated application of the function g.

Fixed-Point Iteration:

x0 = initial guess

xi+1 = g(xi) for i = 0, 1, 2, . . .

Therefore,

x1 = g(x0)
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x2 = g(x1)

x3 = g(x2)

. . .

and so forth. The sequence of numbers xi may or may not converge as the number of steps goes to infinity.
However, if g is continuous and the xi converge, say, to a number r, limi→∞ xi = r, then r is a fixed point of
g. In fact, the continuity of g implies:

g(r) = g(lim xi) = lim
i→∞

g(xi) = lim
i→∞

xi+1 = r

The Fixed-Point Iteration algorithm applied to a function g is easily written as a repeated function composition:

# Fixed-Point Iteration function
# Input: a function g, starting point init, and number of times=steps to apply the function
# Output: a vector of size steps, with all applications of the function
fpi<-function(g,init,steps){
out <- init # some initial number
for(i in 2:steps) {

out[i] <- g(out[i-1]) # repeated application of g
}

return(out)
}

Let’s apply the fixed-point iteration to g(x) = cos(x):

(out<-fpi(cos,init=0,steps=32))

## [1] 0.00000 1.00000 0.54030 0.85755 0.65429 0.79348 0.70137 0.76396
## [9] 0.72210 0.75042 0.73140 0.74424 0.73560 0.74143 0.73751 0.74015
## [17] 0.73837 0.73957 0.73876 0.73930 0.73894 0.73918 0.73902 0.73913
## [25] 0.73905 0.73911 0.73907 0.73909 0.73908 0.73909 0.73908 0.73909

We see the convergence here to the number 0.73909, which therefore is the fixed-point of the cosine function.

Fixed-Point Iteration solves the fixed-point problem g(x) = x, but we are interested in solving equations.

Can every equation f(x) = 0 be turned into a fixed-point problem g(x) = x?

The answer is yes, and in many different ways. However, some ways will not lead to convergence of the
fixed-point iteration, some ways will be slower than others, and in general it is up to us to make a good
choice.

For example, we can rewrite the equation x3 + x− 1 = 0 as a fixed-point equation in many different ways:

1. x = 1− x3

2. x3 = 1− x =⇒ x = 3
√

1− x

3. Add to both sides 2x3 to get 3x3 + x = 1 + 2x3 =⇒ x(3x2 + 1) = 1 + 2x3 =⇒ x = 1+2x3

1+3x2

So, we get three different fixed-point equations x = g(x) that represent the same equation f(x) = 0. Let’s try
to find the fixed-points in the three cases. In the case of the fixed-point function g1(x) = 1− x3, we get:
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g1<-function(x) 1-x^3
out1<-fpi(g1,init=0,steps=24)
plot(head(out1,-1),tail(out1,-1),col="blue",lwd=4,ylab="",xlab="")
curve(g1,0,1,col="red",lwd=3,add=T)
title(main="Fixed-Point Function g1")
grid()
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Fixed−Point Function g1

tail(out1,15)

## [1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

We don’t get a convergence. Let’s change the initial guess to x0 = 0.6, which is very close to the root:

g1<-function(x) 1-x^3
out1<-fpi(g1,init=0.6,steps=24)
plot(head(out1,-1),tail(out1,-1),col="blue",lwd=4,ylab="",xlab="")
curve(g1,0,1,col="red",lwd=3,add=T)
title(main="Fixed-Point Function g1")
grid()
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out1

## [1] 6.0000e-01 7.8400e-01 5.1811e-01 8.6092e-01 3.6190e-01 9.5260e-01
## [7] 1.3556e-01 9.9751e-01 7.4553e-03 1.0000e+00 1.2431e-06 1.0000e+00
## [13] 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00
## [19] 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00

We still don’t get a convergence, so this fixed-point function is useless for us. Now, let’s investigate the second
fixed point function g2(x) = (1− x)1/3:

g2<-function(x) (1-x)^(1/3)
out2<-fpi(g2,init=0,steps=24)
plot(head(out2,-1),tail(out2,-1),col="blue",lwd=4,ylab="",xlab="")
curve(g2,0,1,col="red",lwd=3,add=T)
title(main="Fixed-Point Function g2")
grid()
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tail(out2,15)

## [1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

We don’t get a convergence with this initial guess, so let’s change it to x0 = 0.5:

g2<-function(x) (1-x)^(1/3)
out2<-fpi(g2,init=0.5,steps=24)
plot(head(out2,-1),tail(out2,-1),col="blue",lwd=4,ylab="",xlab="")
curve(g2,0,1,col="red",lwd=3,add=T)
title(main="Fixed-Point Function g2")
grid()
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tail(out2,15)

## [1] 0.69073 0.67626 0.68665 0.67922 0.68454 0.68074 0.68346 0.68151
## [9] 0.68291 0.68191 0.68263 0.68211 0.68248 0.68222 0.68241

Now, we get a convergence. Finally, let’s investigate the third fixed-point function g3(x) = 1+2x3

1+3x2 :

g3<-function(x) (1+2*x^3)/(1+3*x^2)
out3<-fpi(g3,init=0,steps=10)
plot(head(out3,-1),tail(out3,-1),col="blue",lwd=4,ylab="",xlab="")
curve(g3,0,1,col="red",lwd=3,add=T)
title(main="Fixed-Point Function g3")
grid()
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out3

## [1] 0.00000 1.00000 0.75000 0.68605 0.68234 0.68233 0.68233 0.68233
## [9] 0.68233 0.68233

In this case, we get a very fast convergence to the fixed-point 0.68233.
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Geometry of Fixed−Point Iteration

Computing
√

2 by Fixed-Point Iteration Consider the function g(x) = 1
2

(
x+ 2

x

)
.
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QUESTION: Compute by hand the fixed points of g, that is, solve the equation g(x) = x.

The fixed points of g are ±
√

2. Thus, we can use fixed-point iteration to compute approximately the fixed
point

√
2, by starting with a guess of 1, close to the fixed point.

options(digits=12)
g<-function(x) 1/2*(x+2/x)
(out<-fpi(g,init=1,steps=5))

## [1] 1.00000000000 1.50000000000 1.41666666667 1.41421568627 1.41421356237

After only 5 steps, the fixed-point iteration gives an approximation for
√

2 equal to 1.414213562375, and
compared with the exact value

√
2 = 1.414213562373, we can check using all.equal() that the approximation

is correct within 11 digits, check: TRUE (R code behind the check).

The Babylonians knew more than 4000 years ago about this iteration procedure for getting an approximate
value of

√
2.

Newton’s Method

Newton’s Method, also called the Newton–Raphson Method, usually converges much faster than the bisection
and the fixed-point iteration methods. To find a root of f(x) = 0, a starting guess x0 is given, and the
tangent line to the function f at (x0, f(x0)) is drawn. The tangent line will approximately follow the function
down to the x-axis toward the root. The intersection point of the line with the x-axis is an approximate root,
but probably not exact if f curves. Therefore, this step is iterated.

From this geometric picture, we can develop an algebraic formula for Newton’s Method. The tangent line at
x0 has slope given by the derivative f ′(x0). One point on the tangent line is (x0, f(x0)). The point-slope
formula for the equation of the tangent line is

y = f(x0) + f ′(x0)(x− x0)

so that looking for the intersection point x1 of the tangent line with the x-axis is the same as substituting
y = 0 in the line:

0 = f(x0) + f ′(x0)(x1 − x0) =⇒ x1 = x0 −
f(x0)
f ′(x0) ,

assuming f ′(x0) 6= 0. This gives an approximation for the root, which we call x1. Next, the entire process is
repeated, beginning this time with x1, to produce x2, and so on, yielding the following iterative formula:

Newton’s Method:

x0 = initial guess

xi+1 = xi −
f(xi)
f ′(xi)

for i = 0, 1, 2, . . .

Examples:

1. Let’s find the Newton’s Method formula for the equation x3 + x− 1 = 0. Here, f(x) = x3 + x− 1, so
f ′(x) = 3x2 + 1. Thus, the recursive formula is:
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xi+1 = xi −
x3

i + xi − 1
3x2

i + 1 for i = 0, 1, 2, . . .

2. Let’s find the Newton’s Method formula for the equation x2 = 2. Here, f(x) = x2− 2 since the equation
f(x) = 0 is equivalent to the original equation x2 = 2. Thus, Newton’s recursive formula is:

xi+1 = xi −
x2

i − 2
2xi

= 1
2

(
xi + 2

xi

)
for i = 0, 1, 2, . . . ,

which is nothing but the Babylonian formula we used to compute
√

2 approximately with fixed-point iteration.

We can easily implement Newton’s Method as a function, which takes the function f , the derivative function
df , an initial guess init and the number of steps for Newton’s iteration.

newton<-function(f,df,init,steps=10){
x<-init
for (i in 1:(steps-1)){

x[i+1]<-x[i]-f(x[i])/df(x[i])
}

return(x)
}

Example: Let’s apply Newton’s method to the function f(x) = x2 − 2.

f<-function(x)x^2-2
df<-function(x)2*x
(out<-newton(f,df,1,steps=5))

## [1] 1.00000000000 1.50000000000 1.41666666667 1.41421568627 1.41421356237

A good approximation to
√

2 is then 1.414213562375.

Since we are dividing by the derivative of f evaluated at the current approximation, it is advisable to check
whether the derivative is close to 0 or not. We can just add a special check for this:

newton1<-function(f,df,init,steps=10){
x<-init
for (i in 1:(steps-1)){

if (isTRUE(all.equal(df(x[i]),0,1e-6))){
return("Singular Derivative")
} else {

x[i+1]<-x[i]-f(x[i])/df(x[i])
}

}
return(x)
}

f<-function(x)x^2-2
df<-function(x)2*x
newton1(f,df,0,steps=5)

## [1] "Singular Derivative"
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