1. Simplify, leave answer without fractional or negative exponents
$\left(\frac{4 x^{1 / 2} y^{-2 / 3}}{x^{2}}\right)^{-1}=\frac{x^{2}}{4 x^{1 / 2} y^{-2 / 3}}=\frac{x^{3 / 2} y^{2 / 3}}{4}=\frac{x \sqrt{x} \sqrt[3]{y^{2}}}{4}$
2. Simplify, leave answer without radicals in denominator

$$
\frac{\sqrt{6}+3 \sqrt{5}}{3 \sqrt{6}-\sqrt{5}} \cdot \frac{3 \sqrt{6}+\sqrt{5}}{3 \sqrt{6}+\sqrt{5}}=\frac{3 \cdot 6+\sqrt{30}+9 \sqrt{30}+3 \cdot 5}{9 \cdot 6-5}=\frac{18+10 \sqrt{30}+15}{54-5}=\frac{33+10 \sqrt{30}}{49}
$$

3. Simplify (use method I)

$$
\frac{\frac{5}{2}-\frac{5}{x}}{1-\frac{4}{x^{2}}}=\frac{\frac{x}{x} \cdot \frac{5}{2}-\frac{2}{2} \cdot \frac{5}{x}}{\frac{x^{2}}{x^{2}} \cdot \frac{1}{1}-\frac{4}{x^{2}}}=\frac{\frac{5 x-10}{2 x}}{\frac{x^{2}-4}{x^{2}}}=\frac{5 x-10}{2 x} \cdot \frac{x^{2}}{x^{2}-4}=\frac{5(x-2)}{2 x} \cdot \frac{x^{2}}{(x-2)(x+2)}=\frac{5 x}{2(x+2)}
$$

4. Simplify (use method II)

$$
\begin{aligned}
\frac{\frac{2}{y^{2}+y}+\frac{1}{2 y}}{\frac{4}{2 y^{2}+2 y}-\frac{1}{y+1}} & =\frac{\frac{2}{y(y+1)}+\frac{1}{2 y}}{\frac{4}{2 y(y+1)}-\frac{1}{y+1}}=\frac{\frac{2 y(y+1)}{1} \cdot \frac{2}{y(y+1)}+\frac{2 y(y+1)}{1} \cdot \frac{1}{2 y}}{\frac{2 y(y+1)}{1} \cdot \frac{4}{2 y(y+1)}-\frac{2 y(y+1)}{1} \cdot \frac{1}{y+1}} \\
& =\frac{4+(y+1)}{4-2 y}=-\frac{y+5}{2(y-2)}
\end{aligned}
$$

5. First simplify each radical, second perform the indicated operation and third simplify:

$$
\begin{aligned}
(-2 \sqrt{3}+6 \sqrt{50})(-\sqrt{8}) & =(-2 \sqrt{3}+6 \sqrt{25} \sqrt{2})(-\sqrt{4} \sqrt{2})=(-2 \sqrt{3}+6 \cdot 5 \sqrt{2})(-2 \sqrt{2}) \\
& =(-2 \sqrt{3}+30 \sqrt{2})(-2 \sqrt{2})=4 \sqrt{6}-60 \cdot 2=4 \sqrt{6}-120
\end{aligned}
$$

6. Solve:
$x-\sqrt{7-3 x}=1$
Check $x=-3$:
Check $x=2$:
$x-1=\sqrt{7-3 x}$
$(-3)-\sqrt{7-3(-3)}=1$
$(2)-\sqrt{7-3(2)}=1$
$x^{2}-2 x+1=7-3 x$
$-3-\sqrt{7+9}=1$
$2-\sqrt{7-6}=1$
So sol'n is $x=2$.
$x^{2}+x-6=0$
$-3-\sqrt{16}=1$
$2-\sqrt{1}=1$
$(x+3)(x-2)$
Candidates: $\{-3,2\}$
$-3-4=1$
$2-1=1$

Extra:
i. Sam can shovel the snow in a driveway in 3 hours. Her younger sister Jude helps her one day and they complete the task in 2 hours. Working alone, how long would it take Jude? (You must use an equation with a variable in a denominator.)

Person or persons	sam	jude	together
time	3	j	2
Rate (portion of job completed in 1 hr$)$	$1 / 3$	$1 / j$	$1 / 2$

We can't add the times, but we can add the rates:
$\frac{1}{3}+\frac{1}{j}=\frac{1}{2}$
LCD is $6 j$. Multiplying each term by the LCD:

$$
\begin{aligned}
\frac{6 j}{1} \cdot \frac{1}{3}+\frac{6 j}{1} \cdot \frac{1}{j} & =\frac{6 j}{1} \cdot \frac{1}{2} \\
2 j+6 & =3 j \\
6 & =j
\end{aligned}
$$

Don't forget to finish with a sentence:
Working alone, it would take Jude 6 hours to shovel the snow.
ii. A bicyclist rides 30 mi against a wind and returns 30 miles with the wind. His average speed for the return trip is 5 mph faster. How fast did the cyclist ride against the wind if the total time of the trip was 5 hr ?

	R	T	D
Against wind	r	t	30
With wind	$r+5$	$5-t$	30

$$
\begin{aligned}
r t & =30 \\
(r+5)(5-t) & =30
\end{aligned}
$$

Solve the first equation for t and substitute into $2^{\text {nd }}$ equation:

$$
\begin{aligned}
t & =30 / r \\
(r+5)(5-30 / r) & =30 \\
5 r-30+25-150 / r & =30 \\
5 r-35-150 / r & =0
\end{aligned}
$$

This last equation is a rational equation with LCD r. Let's clear the denominator:
$5 r^{2}-35 r-150=0$
This is quadratic. Before we try to factor divide by the common factor 5 :
$r^{2}-7 r-30=0$
So we want two numbers which multiply to 30 but whose difference is 7 :
$(r-10)(r+3)=0$
So we get as candidates for the solution: $\{-3,10\}$
However, negative rates do not make any sense, so the answer is $r=10 \mathrm{mph}$. Finishing with a sentence:
The cyclist rode at rate of 10 mph against the wind.
iii. A professional mover is bringing a load into an apartment building that is 5 ft above the ground level. Her metal ramp is 20 ft long, find the horizontal distance from the loading dock to the end of the ramp exactly \& to nearest in.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 5^{2}+b^{2}=20^{2} \\
& 25+b^{2}=400 \\
& b^{2}=375 \\
& b=\sqrt{375}=\sqrt{25} \sqrt{15}=5 \sqrt{15} \approx 19.365 \mathrm{ft} \approx 19 \mathrm{ft} 4 \mathrm{in} \\
& (12 * .365=4.38)
\end{aligned}
$$

The ramp is $\mathbf{1 9} \mathbf{f t} \mathbf{4}$ inches from the base of the loading dock.

