Exam will last for exactly 1 hour. (The other 40 minutes will be devoted to the new material as scheduled.) 1. (5 points) Simplify each radical, complete the multiplication and then simplify once more.
$5 \sqrt{-3 x}\left(2 \sqrt{28 x^{2}}+4 x \sqrt{-39 x^{5}}\right)$
$=5 i \sqrt{3 x}\left(4 x \sqrt{7}+4 x^{3} i \sqrt{39 x}\right)$
$=20 x i \sqrt{21 x}+20 x^{3} i^{2} \sqrt{3 \cdot 3 \cdot 13 x^{2}}$
$=20 x i \sqrt{21 x}-60 x^{4} \sqrt{13}$
$=-60 x^{4} \sqrt{13}+20 x i \sqrt{21 x}$
2. (5 points) Divide, leave in standard complex form:
$\frac{6-4 i}{10+9 i} \cdot \frac{10-9 i}{10-9 i}=\frac{60-54 i-40 i+36 i^{2}}{100-81 i^{2}}=\frac{24-94 i}{181}=\frac{24}{181}-\frac{94}{181} i$
3. (10 points) Put into standard form $a x^{2}+b x+c=0$ and then solve using completing the square:
$(x+3)^{2}+x^{2}+3=14 x \Rightarrow 2 x^{2}-8 x+12=0$ To complete the square, we begin by dividing by 2 :
$x^{2}-4 x+6=0 \Rightarrow x^{2}-4 x+\ldots=-6+\ldots \Rightarrow x^{2}-4 x+{ }_{-} \underline{4}_{-}=-6+{ }_{-} \underline{4}_{-}$
$\Rightarrow(x-2)^{2}=-2 \Rightarrow x-2= \pm i \sqrt{2} \Rightarrow x=2 \pm i \sqrt{2}$
4. (10 points) Put into standard form $a x^{2}+b x+c=0$
and then solve using the quadratic formula:
$3 x^{2}+11=14 x \Rightarrow 3 x^{2}-14 x+11=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-14) \pm \sqrt{(-14)^{2}-4 \cdot 3 \cdot 11}}{2 \cdot 3}$
$=\frac{14 \pm \sqrt{196-132}}{6}=\frac{14 \pm \sqrt{64}}{6}=\frac{14 \pm 8}{6} \quad\left\{1, \frac{22}{6}=\frac{11}{3}\right\}$
5. (15 points) Find the vertex and and y-intercept. Use factoring to solve the quadratic equation to find the x-intercepts. Mark these 4 points on the provided graph paper and label with their coordinates. Use the 4 points to help you sketch the quadratic function (parabola).
$y=2 x^{2}-12 x+10=2\left(x^{2}-6 x+5\right)$ so y-int is $(0,10)$
$\Rightarrow \frac{y}{2}=x^{2}-6 x+5 \frac{y}{2}-5+\ldots=x^{2}-6 x+\ldots$
$\Rightarrow \frac{y}{2}-5+_{-} \underline{9}_{-}=x^{2}-6 x+_{-} \underline{9}_{-}$
$\Rightarrow \frac{y}{2}+4=(x-3)^{2} \Rightarrow y=2(x-3)^{2}-8$
so vertex is $(3,-8)$
$y=0 \Rightarrow 2(x-1)(x-5)=0 \Rightarrow x=1$ or 5
so x-intercepts are $(1,0)$ and $(5,0)$

6. (10 points) If the endpoints of a line segment are $(\mathbf{- 3}, \mathbf{2})$ and $(\mathbf{1}, \mathbf{4})$. Find the equation of the perpendicular bisector in slope intercept form. Check by providing a quick sketch below of the line segment and the line.

The midpoint is $(-1,-1)$.
The slope of the line segment is

$$
(-4-2) /(1-(-3))=-6 / 4=-3 / 2 .
$$

Therefore, the slope of the perpendicular line is $2 / 3$.
Hence the equation for the \perp bisector is

$$
y+1=2 / 3(x+1) \text { or } y=(2 / 3) x-1 / 3
$$

7. (15 pts) Put equation of circle into standard form by completing square for both x and y . On graph paper provided, mark center as well as 4 points on circle. Label 5 points with their coordinates. Sketch graph.
$x^{2}+y^{2}-4 x+6 y+4=0$
$x^{2}-4 x+$ \qquad $+y^{2}+6 y+$ \qquad $=-4+$ \qquad $+$ \qquad
$x^{2}-4 x+_\underline{4}-+y^{2}+6 y+_\underline{9}-=-4+{ }_{-}^{4}-+_\underline{9}$
$(x-2)^{2}+(y+3)^{2}=9$
So center is ($2,-3$) and radius is 3

8. (15 points) The gas mileage of a car is given by the function $\mathrm{M}(\mathrm{x})=-0.012 \mathrm{x}^{2}+1.2 \mathrm{x}+10$ where x represents the speed in miles per hour and $M(x)$ is given in miles per gallon. Equation is valid from $x=40$ mph until $\mathrm{x}=80 \mathrm{mph}$. At what speed will the car get the maximum gas mileage?
Find the vertex using formula method. Find the mileage at the lower and upper values of interval. Use these 3 points to provide a quick sketch below. Answer question with a complete sentence (include the units!).
x coordinate of vertex is
$-\frac{b}{2 a}=-\frac{1.2}{2(-.012)}=50$
Now let's create a table and plot the points

\mathbf{x}	\mathbf{y}
40	38.2
50	40
80	29.2

Vertex is $(50,40)$
The car will get maximum gas mileage when it is travelling 50 mph .

9. (15 points) Solve the 3×3 system. You MUST use elimination. (Substitution not allowed.)

Hint: look for variable with 1 or -1 as coefficient and eliminate it.
z has a coefficient of 1 in the first equation so we eliminate it from each of the pairings of equation 1 with the other 2 equations.

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x-3 y+z=-9 \\
3 x+5 y+2 z=16 \\
-4 x+2 y-3 z=4
\end{array}\right. \\
& \left\{\begin{array} { l }
{ 2 x - 3 y + z = - 9 } \\
{ 3 x + 5 y + 2 z = 1 6 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-4 x+6 y-2 z=18 \\
3 x+5 y+2 z=16
\end{array} \Rightarrow-x+11 y=34\right.\right. \\
& \left\{\begin{array} { l }
{ 2 x - 3 y + z = - 9 } \\
{ - 4 x + 2 y - 3 z = 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
6 x-9 y+3 z=-27 \\
-4 x+2 y-3 z=4
\end{array} \Rightarrow 2 x-7 y=-23\right.\right.
\end{aligned}
$$

We now have 2 x 2 system in the x and z variables.
Again there is a variable with a 1 or -1 , namely x , so we eliminate it:
$\left\{\begin{array}{l}-x+11 y=34 \\ 2 x-7 y=-23\end{array} \Rightarrow\left\{\begin{array}{l}-2 x+22 y=68 \\ 2 x-7 y=-23\end{array}\right.\right.$
$15 y=45$ so $y=3$
Substitute to get x :
$-x+11(3)=34 \Rightarrow$ so $x=-1$
Now substitute to get z :
$2(-1)-3(3)+z=-9 \Rightarrow z=2$
and the solution is $(-1,3,2)$
Extra credit (10 points) Solve and graph as a check the nonlinear systen:
$\left\{\begin{array}{l}y=2 x^{2}-4 x+3 \\ x^{2}-2 x+y^{2}=0\end{array} \Rightarrow\left\{\begin{array}{l}-2 x^{2}+4 x+y=3 \\ 2 x^{2}-4 x+2 y^{2}=0\end{array}\right.\right.$
$2 y^{2}+y=3 \Rightarrow 2 y^{2}+y-3=0$
$(2 y+3)(y-1)=0 \Rightarrow y=-\frac{3}{2}$ or 1
$y=-\frac{3}{2}: \quad x^{2}-2 x+\left(-\frac{3}{2}\right)^{2}=0$ or $4 x^{2}-8 x+9=0$
$b^{2}-4 a c=(-8)^{2}-4(4) 9=-80$ so no real solution
$y=1: \quad x^{2}-2 x+1=0$ or $(x-1)^{2}=0$ so $x=1$
and $(1,1)$ is the only solution. Now we do graph:
$y=2 x^{2}-4 x+3 \Rightarrow \frac{y}{2}-2+$ \qquad $=x^{2}-2 x+$ \qquad
$\frac{y}{2}-\frac{3}{2}+{ }_{-}{ }_{-}=x^{2}-2 x+_{-} \underline{1}_{-} \Rightarrow \frac{y}{2}-\frac{1}{2}=(x-1)^{2}$
$\Rightarrow y=2(x-1)^{2}+1$
$x^{2}-2 x+$ \qquad $+y^{2}=0+$ \qquad
$\Rightarrow x^{2}-2 x+{ }_{-} \underline{1}_{-}+y^{2}=0+{ }_{-} 1_{-}$
$\Rightarrow(x-1)^{2}+y^{2}=1$

