Practice Exam III Halleck solutions MAT 1275
 Spring 2017

Exam will last for exactly 1 hour. (The other 40 minutes will be devoted to the new material as scheduled.) 1. (10 pts) Convert $17 \mathrm{pi} / 6$ radians to degrees and -400 degrees to radians. Also draw each of the angles.

17 pi	180 deg
6	pi

17 pi	30 deg
1	pi

-400 deg	pi			
	180 deg		-400 deg	pi
:---	:---			
	180 deg	$=-20 / 9 \mathrm{pi}$		

2. (16 points) Prove the following identity:

$$
\begin{aligned}
\frac{\cos x}{2-2 \cos x}-\frac{\cos x}{2+2 \cos x} & =\cot ^{2} x \\
\frac{\cos x}{2}\left[\frac{1}{1-\cos x}-\frac{1}{1+\cos x}\right] & =\frac{\cos ^{2} x}{\sin ^{2} x} \\
\frac{\cos x}{2}\left[\frac{(1+\cos x)-(1-\cos x)}{(1-\cos x)(1+\cos x)}\right] & = \\
\frac{\cos x}{2}\left[\frac{2 \cos x}{1-\cos ^{2} x}\right] & = \\
\frac{\cos ^{2} x}{\sin ^{2} x} & =
\end{aligned}
$$

3. (20 pts) Solve exactly each of the equations for $[0,2 \mathrm{pi})$. NO PICTURE NO CREDIT.
$\cot ^{2} x=3$
$\tan ^{2} x=1 / 3$
$2 \sin ^{2} x-1=0$
$\tan x= \pm 1 / \sqrt{3}$
a)
$x=\pi / 6,5 \pi / 6,7 \pi / 6,11 \pi / 6$
b) $\begin{aligned} & x=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4\end{aligned}$

All the ref angles are pi/6

All the ref angles are pi/4
4. (20 points) Given $\csc \theta=3$ and $\tan \theta<0$, find the values of the 5 other trigonometric functions. NO PICTURE NO CREDIT. Use 3 as your radius for circle. Drop or raise the perpendicular to the x-axis to create a triangle. Draw and label the angle (θ) as well as the reference angle (ref \angle).

$$
\sin \theta=\frac{1}{3} \quad \csc \theta=3
$$

$\cos \theta=-\frac{2 \sqrt{2}}{3} \quad \sec \theta=-\frac{3}{2 \sqrt{2}}=-\frac{3 \sqrt{2}}{4}$
$\tan \theta=-\frac{1}{2 \sqrt{2}}=-\frac{\sqrt{2}}{4} \quad \cot \theta=-2 \sqrt{2}$

(14 points) a) Graph 1 period of $y=-2 \cos \left(\frac{3}{4} t\right)$ on axes below. Amplitude is 2 and period is $2 \mathrm{pi} /(3 / 4)=8 \mathrm{pi} / 3$.

b) Find the equation for the graph below. Amplitude is 3 and period is 3 .

$$
\begin{aligned}
& b=2 \pi / 3 \\
& a=3 \\
& y=3 \sin ((2 \pi / 3) x)
\end{aligned}
$$

5. (20 points) When an airplane A is landing on a 2.03 -mile-long runway BE , the angles of depression to the beginning B and end E of the runway are 10.12° and 8.13°, respectively.
a) Find angles A and E of the triangle ABE (Hint: the horizontal and the runway are parallel.)
horizontal -> runway

b) How far is the plane from the near end of the runway (i.e., find the length of AB)? Round to the nearest hundredth. Write your answer as a sentence and include units.
Using the law of sines:
$\frac{\sin A}{a}=\frac{\sin E}{e}$
$\frac{\sin 1.99^{\circ}}{2.03}=\frac{\sin 8.13^{\circ}}{e} \quad$ The plane is 8.27 miles from the beginning of the runway.
$e=\frac{2.03 \sin 8.13^{\circ}}{\sin 1.99^{\circ}}=8.27 \mathrm{mi}$
