Exam will last for exactly 1 hour. (The other 40 minutes will be devoted to the new material as scheduled.) 1. (5 points) Simplify each radical, complete the multiplication and then simplify once more.
$5 \sqrt{-3 x}\left(2 \sqrt{28 x^{2}}+4 x \sqrt{-39 x^{5}}\right)$
2. (5 points) Divide, leave in standard complex form:
$\frac{6-4 i}{10+9 i}$
3. (10 points) Put into standard form $a x^{2}+b x+c=0$ and then solve using completing the square:

$$
(x+3)^{2}+x^{2}+3=14 x
$$

4. (10 points) Put into standard form $a x^{2}+b x+c=0$ and then solve using the quadratic formula:

$$
3 x^{2}+11=14 x
$$

5. (15 points) Find the vertex and y-intercept. Use factoring to solve the quadratic equation to find the x intercepts. Mark these 4 points on the provided graph paper and label with their coordinates. Use the 4 points to help you sketch the quadratic function (parabola).

$$
y=2 x^{2}-12 x+10
$$

6. (10 points) If the endpoints of a line segment are $(\mathbf{- 3}, \mathbf{2})$ and $(\mathbf{1}, \mathbf{4})$. Find the equation of the perpendicular bisector in slope intercept form. Check by providing a quick sketch below of the line segment and the line.

7. (15 pts) Put equation of circle into standard form by completing square for both x and y. On graph paper provided, mark center as well as 4 points on circle. Label 5 points with their coordinates. Sketch graph. $x^{2}+y^{2}-4 x+6 y+4=0$
8. (15 points) Gas mileage depends in part on the speed of a particular car. The gas mileage of a car is given by the function $\mathrm{M}(\mathrm{x})=-0.012 \mathrm{x}^{2}+1.2 \mathrm{x}+10$ where x represents the speed in miles per hour and $\mathrm{M}(\mathrm{x})$ is given in miles per gallon. Equation is valid from $x=40 \mathrm{mph}$ until $x=80 \mathrm{mph}$. At what speed will the car get the maximum gas mileage?
Find the vertex using formula method. Find the mileage at the lower and upper values of interval. Use these 3 points to provide a quick sketch below. Answer question with a complete sentence (include the units!).

9. (15 points) Solve the 3×3 system. You MUST use elimination. (Substitution not allowed.)

Hint: look for variable with 1 or -1 as coefficient and eliminate it.
$2 x-3 y+z=-9$
$3 x+5 y+2 z=16$
$-4 x+2 y-3 z=4$

Extra credit (10 points) Solve and graph as a check the nonlinear system:
$\left\{\begin{array}{l}y=2 x^{2}-4 x+3 \\ x^{2}-2 x+y^{2}=0\end{array}\right.$

