GCF and factoring
Recall the oprocess of distribution:
EX:
$$3x^2y^4 (1-2xy^2 + 3x^2y^3)$$

 $= 3x^2y^4 - 6x^3y^4 + 9x^4y^7$
Now we want to "go badewards"
Example: Starting from a much more modest
guestion, what is the greatest common
factor (gcf) 2.2.5° and 2°.3°.5°.
In other words what is the largest
number that divides the two numbers?
It is clear that 2 divides 2 and 2°.
So, 2 is the gcf of 2.3°.5°.
It is clear that 3° divides 3° and 3°.
But 3° does not divide 32.
So gcf of 2.3°.5° and 2°.3°.5
is 2.3°.5° (= 90).
Example: What is the gcf of x², x³, and x⁴.
We see X² is a factor of x², s³ and x⁴.
We see X² is a factor of x².
Since $x^2 = \frac{1}{x}$. So, X² is the gcf.

Example: GCF of
$$3x^2y^4$$
, $6x^3y^6 e^{-9x^4y^7}$;
 $3x^2y^4$.
Example GCF of $10x^2y^3$ and $15x^3y$
is $5x^2y$.
Factoring out the GCF
Example:
 $3x^2y^4 - 6x^3y^6 + 9x^4y^7 = 3x^2y^4 (1-2xy^2+3x^2y^3)$
since $3x^2y^4 - 6x^3y^6 + 9x^4y^7$
 $= \frac{3x^2y^4 - 6x^3y^6 + 9x^4y^7}{3x^2y^4} = \frac{3x^2y^4}{3x^2y^4} + \frac{9x^4y^7}{3x^2y^4}$
 $= 1 - 2xy^2 + 3x^2y^3$.
OTry: Factor out the GCF:
 $(10x^2y^3 - 15x^3y)$
 $OTry: Factor out the GCF$
 $5x^2y^4 - 10x^2y^4 + 5x^2y^5$

Factoring by grouping
Example:
$$X^2 + 3x + 2x + 6$$

($x^2 + 3x$) + ($2x + 6$)
First group in pairs of terms
($x^2 + 3x$) + ($2x + 6$)
Factor out G(F for each binomial:
 $X(x + 3) + 2(x + 3)$
Note the common factor
and factor it out.
($x + 3$) ($x + 2$)
Example: Factor by grouping:
 $12x^2 + 10x = 18x - 15$
($12x^2 + 10x = 18x - 15$)
($12x^2 + 10x = 18x - 15$)
($12x^2 + 10x + (-18x - 15)$)
($2x + 6x + 5$) + (-3) ($6x + 5$)
($3x + 5$) ($2x - 3$)
($6x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($2x - 3$)
($5x + 5$) ($5x + 5$) ($5x - 4$)

Ans
•
$$5x^{2}y(2y^{2}-3x)$$

• $5x^{3}y^{5}(x^{2}y^{4}-Zx^{4}y+1)$
• $(3x+2)(9x-2)$

.