Radical Equations.
Example: $\sqrt{x}=4$. It is easy to see that x must 1016 , but we could also see that

$$
\begin{aligned}
& \text { but we could also see } \\
& \sqrt{x}=4 \underset{t_{0}(\sqrt{x})^{2}}{ }=4^{2} 6 . \quad\left(\text { since }(\sqrt{x})^{2}=x\right) \\
& x=5
\end{aligned}
$$

Example: $\quad \sqrt{x-1}=2$ It is not hard to see $x=5$ Since $\sqrt{5-1}=\sqrt{4}=2$.
We can also see it this way:

$$
\begin{aligned}
\sqrt{x-1}=2 & \Rightarrow(\sqrt{x-1})^{2}=2^{2} \\
& \Rightarrow x-1=4
\end{aligned}
$$

$$
\Rightarrow x=5 . \sqrt{5-1}=2 \text { is true. }
$$

Example: $\sqrt{x-1}+3=15$. It is hard to see what the Solution is without work!
isolate $\sqrt{*} \longrightarrow$

$$
\begin{aligned}
& \sqrt{x-1}+3=15 \Rightarrow \sqrt{x-1}=12 \\
& \Rightarrow x-1=12^{2} \Rightarrow x=145 .
\end{aligned}
$$

Example: $x-\sqrt{3 x-5}=1 \because$ Almost impossible to see without work!

$$
\begin{aligned}
\text { Isolate } \sqrt{*} \longrightarrow \quad & -\sqrt{3 x-5}=1-x \\
\Rightarrow & (-\sqrt{3 x-5})^{2}=(1-x)^{2}=(1-x)(1-x)
\end{aligned}
$$

Thisis a $\overrightarrow{\text { a }} \overrightarrow{ } \Rightarrow 3 x-5=1-2 x+x^{2}$ quadratic equation!

$$
\Rightarrow x^{2}-5 x+6=0
$$

$$
\Rightarrow(x-3)(x-2)=0
$$

$$
\Rightarrow x=2 \text { or } 3
$$

This says: If $x-\sqrt{3 x-5}=1$ then $x=2$ or 3 ,
It does not say $x=2 \& x=3$ are solutions!
We must check: $2-\sqrt{2 \cdot 3-5}=2-\sqrt{1}=1$

$$
\& \quad 3-\sqrt{3 \cdot 3-5}=3-\sqrt{4}=1
$$

So 2 and 3 are solutions.

Example: $\quad \sqrt{x}=-2 \Rightarrow x=(-2)^{2}=4$

$$
\text { But } \sqrt{4}=2 \neq-2 \text {. So, thereare } \text { no solutions }
$$

Example: no solutions.

$$
2=x-\sqrt{6-5 x}
$$

$$
\Rightarrow 2-x=-\sqrt{6-5 x}
$$

$$
\Rightarrow(2-x)^{2}=6-5 x
$$

$$
\Rightarrow x^{2}-4 x+4=6-5 x
$$

$$
\Rightarrow x^{2}+x-2=0
$$

$$
\Rightarrow(x+2)(x-1)=0
$$

$$
\Rightarrow x+2=0 \text { or }
$$

$$
x-1=0
$$

$$
\Longrightarrow x=-2 \text { or } 1 .
$$

But $-2-\sqrt{6-5 \cdot(-2)}=-6 \neq 2$
and $\quad 1-\sqrt{6-5}=0 \neq 2$.
So there are no. solutions.

Example: $x-2=2 \sqrt{x+1}-x$

$$
\begin{aligned}
& \Rightarrow 2 x-2=2 \sqrt{x+1} \\
& \Rightarrow x-1=\sqrt{x+1} \\
& \Rightarrow x^{2}-2 x+1=x+1 . \\
& \Rightarrow x^{2}-3 x=0 \\
& \Rightarrow x(x-3)=0 \\
& \Rightarrow x=0 \text { or } 3 .
\end{aligned}
$$

But while $3-2=2 \sqrt{3+1}-3$,

$$
-2 \neq 2 \sqrt{0+1}-0
$$

So, there is one solution:

$$
x=3 .
$$

