Radical Equations.
Example:
$$\sqrt{x^2} = 4$$
 It is easy to see that x must be 16,
but we could also see that
 $\sqrt{x} = 4 \implies x = 16$. $(since(\overline{x})^2 = x)$
Example: $\sqrt{x-1} = 2$ It is not hard to see $x = 5$
Since $\sqrt{y-1} = \sqrt{y-1}^2 = \sqrt{y-2}$.
We can also see it this way:
 $\sqrt{x-1} = 2 \implies \sqrt{x-1}^2 = 2^2$
 $\implies x-1=4$
Example: $\sqrt{x-1} + 3 = 15$. It is hard to see what the
Solution is with our work.]
isolate $4 = \sqrt{x-1} + 3 = 15 = \sqrt{x-1} = 12$
 $\implies x-1 = 12^2 = x = 145$.
Example: $x - \sqrt{3x-5} = 1$. Almost impossible to see
without work.]
Isolate $\sqrt{x} = -\sqrt{3x-5} = 1 - x$
 $\implies (-\sqrt{3x-5})^2 = (1-x)^2 = (1-x)^2 = (1-x)(1-x)$
This is a
guadantic equation.]
 $x - 2 = x = 3$
This says: If $x - \sqrt{3x-5} = 1$ then $x = 2 = x = 3$.
It does not say $\overline{x} = 2 = x = 3$ are solutions.]
We must check: $2 - \sqrt{3\cdot3-5} = 3 - \sqrt{4^2} = 1 \sqrt{3}$
So d and 3 are solutions.

Example:
$$\sqrt{x} = -2 \Rightarrow x = (-2)^2 = 4$$

But $\sqrt{4} = 2 \neq -2$. So there are no solutions.
Example: $2 = x - \sqrt{6-5x}$
 $\Rightarrow 2 - x = -\sqrt{6-5x}$
 $\Rightarrow (2 - x)^2 = 6 - 5x$
 $\Rightarrow x^2 - 4x + 4 = 6 - 5x$
 $\Rightarrow x^2 + x - 2 = 0$
 $\Rightarrow x^2 + x - 2 = 0$
 $\Rightarrow (x + 2)(x - 1) = 0$
 $\Rightarrow x + 2 = 0 \text{ or } x - 1 = 0$
 $\Rightarrow x = -2 \text{ or } 1$.
But $-2 - \sqrt{6-5(-2)} = -6 \neq 2$
and $1 - \sqrt{6-5} = 0 \neq 2$.
So there are no solutions.

Example: X-2=2, x+1 - X $\Rightarrow 2x - 2 = 2\sqrt{x + 1}$ \Rightarrow X-l= $\sqrt{x+1}$ $\implies x^2 - 2x + 1 = x + 1$ \implies $\chi^2 - 3 \times = 0$ => x(x-3)= 0 => X=003. But while 3-2=2/3+1-3, -2 = 2 10+1 - D. So, there is one solution. $\chi = 3.$