General Biology 1 BIO1201 RM 1021 Syllabus & Textbook: https://openlab.citytech.cuny.edu/oer-biology/lecture-schedule/

Lecturer: Michael Gotesman, PhD Email: mgotesman@citytech.cuny.edu

Grade Breakdown:

Lecture (60%) Exams (4): 22.5% Each Pop Quizzes (?): 10% Average

Lab (40%) – Lab Instructor

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

Reading List:

Week 1: Evolution 479-502 & Phylogeny 523-545

Week 2: Virus 547-573 & Prokaryotes 575-610

Week 3: Protists 611-642

Week 4: Fungi 643-673

Week 5: Seedless Plants 675-701

Week 6: Seeded Plants 643-673

Week 7: Animal Kingdom 703-730

Week 8: Animal Organization 731-754

Week 9: Circulation 1175-1199

Week 10: Immunity 1225-1258

Week 11: Digestion 967-995

Week 12: Respiration 1147-1173

Week 13: Body Fluid 1201-1223

Week 14: Nervous System 997-1037

Week 15: Reproduction 1259-1293

https://openlab.citytech.cuny.edu /oer-biology/textbook/

https://bbhosted.cuny.edu/

https://openlab.citytech.cuny.edu/oerbiology/lecture-schedule/

The Protists: Evolution and Diversity

Outline

- The Eukaryotic Cell
 - Origins of eukaryotic cells the Endosymbiont Theory
 - Eukaryotes vs Prokaryotes
- General Biology of Protists
 - Protistology
 - Ecology
 - Classification

Diversity of Protists:

- The plant-like: the Algae
- The animal-like: the Protozoa
- The fungi-like: the Slime and Water Molds

What does a protist look like? Do we eat protists? Can we have them as pets? What are they good for/at?

Protista are not prokaryotes Nucleus Kingdom Protista

Where did the Nucleus come from?

The emergence of Eukaryotes – the Endomembranes

Origin of the Eukaryotic Cell

The endosymbiotic hypothesis

Aerobic bacteria became mitochondria Cyanobacteria became chloroplasts

Also see: http://www.sumanasinc.com/webcontent/animations/content/organelles.html

Eukaryotes vs Prokaryotes

Eukaryotes vs Prokaryotes

	Prokaryotes	Eukaryotes
	DNA is naked	DNA bound to protein
DNA	DNA is circular	DNA is linear
	Usually no introns	Usually has introns
O rganelles	No nucleus	Has a nucleus
	No membrane-bound	Membrane-bound
	70S ribosomes	80S ribosomes
	Binary fission	Mitosis and meiosis
R eproduction	Single chromosome (haploid)	Chromosomes paired (diploid or more)
Average Size Smaller (~1–5 µm)		Larger (~10–100 µm)

Eukaryotes vs Prokaryotes

Evolutionary Tree of Life 3 Domains

Protists

Classified into the Domain Eukarya & the Kingdom
 Protista

•Complexity and diversity of protists makes them difficult to classify

-Cannot be classified as plants, animals, or fungi

Could be split into as many as a dozen kingdoms

•Morphology:

- Most are unicellular, not all!

Many with amazingly high level of structural and functional complexity

•Amoeboids and ciliates possess unique organelles, such as contractile vacuoles

Onychodromus, a giant ciliate ingesting one of its own kind

Plasmodum, a slime mold

Acetabularia, a single-celled green alga

Blephanisma, a ciliate with visible vacuoles Licmorpha, a stalked diatom

Novionina, a foraminiferan

Ceratium, an armored dinoftageitate Bossiella, a coralline red alga

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Amoeba, Amoeba proteus

right @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Rockweed, Fucus

Macrocystis

Nereocystis

General Biology of the Protists

- Life cycles
 - Most protists are free-living
 - Some are parasitic
 - Asexual reproduction common
 - Sexual reproduction may occur when conditions deteriorate
 - Some life cycles simple, many extremely complex
- Size
 - Vary in size from microscopic algae and protozoans to kelp more than 200 m in length

Efficiency of nitrogen removal and protist communities: the potential for introduction of novel biological index

B. PÉREZ-UZ⁴⁴, L. ARR EGUI⁴⁴, P. CALVO⁴, H. SALVADÓ⁴⁴, N. FERNÁNDEZ⁶, E. RODRIGUEZ⁶, A. ZORNOZA⁶⁶, AND S. SERRANO⁴

1 figure both as first author

*Dept. Microbiología III. Facultad CC. Biologicas.Universidad Complutense de Madrid, Spain

* Dept. Biologia Animal, Facultat Biologia. Universitat de Barcelona, Spain

° Grupo de Bioindicación de Sevilla (GBS), Spain

^{oo} Grupo aguas de Valencia. ED AR Quart-Benager, EP S AR. Valencia, Spain.

ARTICLE INFO

Article published in the International Workshop on Integrated vision of urban and agro-industrial wastewater treatment, monitoring and reclamation: key role played by the Waste Water Treatment Plant. 2-3 Julio, 2009. ISRIM / LIFE (CEE n. 1973/92 EU Financial Instrument for the Environment), Terni, Italy.

ABSTRACT

The study of three WWTPs with different nitrogen removal systems during a

BioRemediation

Ecology of Protists

- Protists are of enormous ecological importance
- Photoautotrophic forms:
 - Produce oxygen
 - Function as producers in both freshwater and saltwater ecosystems
 - Major component of plankton
 - Organisms that are suspended in the water
 - Serve as food for heterotrophic protists and animals
- Many protists are symbionts
 - Ranges from strict parasitism to mutualism
 - Coral reefs greatly aided by symbiotic photoautotrophic protists in tissues of corals (animals)

Unicellular and colonial eukaryotes in a drop of pond water

Evolution of Protists

Complexity and diversity of protists makes them difficult to classify

- Cannot be classified as plants:
 - Gametes and zygotes are not protected from drying out
- Cannot be classified as fungi
 - Do not have chitin in their cell wall
- Cannot be classified as animals
 - Do not undergo embryonic development

Could be split in a 12 different kingdoms Now 6 supergroups

DOMAIN: Eukarya **Protists**

CHARACTERISTICS Usually a complex single cell: Photosynthesize, ingest, or absorb food; Halpold life cycle

Supergroup	Members	Distinguishing Features
Archaeplastids	Green algae, red algae, land plants, charophytes	Plastids; unicellular, colonial, and multicellular
Chromalveolates	Stramenopiles: brown algae, diatoms, golden brown algae, water molds Alveolates: ciliates, apicomplexans, dinoflagellates	Most with plastids; unicellular and multicellular Alveoli support plasma membrane; unicellular
Excavates	Euglenids, kinetoplastids, parabasalids, diplomonads	Feeding groove; unique flagella; unicellular
Amoebozoans	Amoeboids, plasmodial and cellular slime molds	Pseudopods; unicellular
Rhizarians	Foraminiferans, radiolarians	Thin pseudopods; some with tests; unicellular
Opisthokonts	Choanoflagellates, animals, nucleariids, fungi	Some with flagella; unicellular and colonial

Blepharisma, a ciliate with visible vacuoles

Nonionina, a foraminiferan

Ceratium, an armored dinoflagellate

Bossiella, a coralline red alga

Assorted fossilized diatoms

Onychodromus, a giant ciliate ingesting one of its own kind

Plasmodium, a slime mold

Acetabularia, a single-celled green alga (chlorophyte)

Synura, a colony-forming golden brown alga

Amoeba proteus, a protozoan

/OLUTIONARY LATIONSHIPS Ш M

The scheme chosen for this discussion is based on modes of nutrition:

- Plant-like: photoautotrophs
- Animal-like: heterotrophs by ingestion or parasites
- Fungus- like:
 heterotrophs by absorption
- Some are **mixotrophic**
 - Combine autotrophic and heterotrophic nutritional modes

CHARACTERISTICS

Eukaryotes

CLASSIFICATION

- Primarily unicellular
- Metabolically diverse
- Structurally complex

Asexual reproduction usual: sexual reproduction diverse

Photoautotrophs*

PHYLUM: Chlorophyta PHYLUM: Rhodophyta PHYLUM: Phaeophyta PHYLUM: Chrysophyta PHYLUM: Pyrrophyta PHYLUM: Euglenophyta green algae red algae brown algae diatoms, golden-brown algae dinoflagellates euglenoids

Heterotrophs by ingestion or parasitic*

- PHYLUM: Zoomastigophora PHYLUM: Rhizopoda PHYLUM: Foraminifera PHYLUM: Actinopoda PHYLUM: Ciliophora PHYLUM: Apicomplexa PHYLUM: Myxomycota PHYLUM: Acrasiomycota
- zooflagellates amoeboids foraminiferans radiolarians ciliates sporozoans plasmodial slime molds cellular slime molds

Heterotrophs by absorption (saprotrophs) or parasitic* PHYLUM: Oomycota water molds

* Not in the classification of organisms but added here for clarity

General Biology 1 BIO1201 RM 1021 Syllabus & Textbook: https://openlab.citytech.cuny.edu/oer-biology/lecture-schedule/

Lecturer:Michael Gotesman, PhDEmail:mgotesman@citytech.cuny.eduOffice Hours:Wednesday 11:30 - 12:30 PMRoom:A 302

Grade Breakdown:

Lecture (60%) Exams (4): 22.5% Each Pop Quizzes (?): 10% Average

Lab (40%) – Lab Instructor

Letter Grade	Numerical
	Ranges
Α	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	70-76.9
D	60-69.9
F	59.9 and below

Reviewing this first part...

- 1. List and discuss ways that protists are varied.
- 2. What do they have in common?
- 3. Describe how the nucleus, the chloroplast and the mitochondrion may have become a part of the eukaryotic cell. How is this theory called?
- 4. Where would you find protists? Give some important roles of protists.
- How can we very simply organize protists (according to the previous slides)

The Plant-like: The Algae

Diversity of Protists: Green Algae – The Chlorophyta

- Algae refers to many phyla of protists that carry out photosynthesis
 - Phylum Chlorophyta contains green algae
 - Approximately 7,500 species
 - Inhabit a variety of environments including oceans, freshwater, snowbanks, tree bark, and turtles backs
 - Many are symbionts with fungi, plants, or animals
 - Morphology varies
- Majority unicellular, but many are filamentous or colonial
- Some are multicellular and resemble leaves of lettuce

Diversity of Protists: Green Algae – The Chlorophyta

Plants thought to be derived from Chlorophyta because both groups:

- Have a cell wall that contains cellulose
- Possess chlorophylls a and b, and
- Store excess food as starch

Charophyta – the plant ancestor...

Green Algae: Chlamydomonas

- A minute (<25 μm), actively moving flagellate
- Inhabits still, freshwater pools
- Fossil ancestors date back over a billion years
- Most often reproduces asexually
- Occasionally reproduces sexually

Green Algae: Spirogyra

- Filamentous green algae
- Found in green masses on the surfaces of ponds and streams
- Has ribbon-like, spiraled chloroplasts
- Sexual reproduction by **conjugation**:
 - A temporary union during which the cells exchange genetic material
 - Two filaments line up parallel to each other
 - Cell contents of one filament move into the cells of the other filament
 - Forms diploid zygospores
 - In spring, undergo meiosis to produce new haploid filaments

Spirogyra

Green Algae: Multicellular Forms

• Ulva

- Multicellular green algae
- Commonly called sea lettuce
- Thallus (body) is two cells thick
- Can be as much as a meter long
- Sexual cycle involves alternation of generations (What's that?)
- Similar to higher plants, except
 - Both generations look exactly alike, and the gametes all look the same

a. Ulva, several individuals

Green Algae: Colonial Forms

Volvox

- A colony is a loose association of independent cells
- A Volvox colony:
 - A hollow sphere
 - Thousands of cells arranged in a single layer surrounding a watery interior
 - Each cell of colony resembles a Chlamydomonas cell
 - Flagella beat in a coordinated fashion
 - Some cells are specialized for reproduction

ughter colony 15 µn vegetative cells

Diversity of Protists: Red Algae – The Rhodophyta

- Multicellular
- About 5,000 species
- Live mostly in warmer seawater, some as deep as 200 m
- Economic Importance
 - Agar capsules; dental impressions; cosmetics; culture medium; electrophoresis; food prep.
 - Carrageen an emulsifying agent used in chocolate, low-fat foods, & cosmetics
 - The reddish-black wrappings around sushi rolls consist of processed Porphyra blades

Red Algae

Nutrition Fa
Amount Per Serving
Calories 180 Calories fro
Total Fat 5g
Saturated Fat 0.5g
Trans Fat 0g
Cholesterol 15mg
Sodium 230mg
Potassium 520mg
Total Carbohydrate 290
Dietary Fiber 50
Sugars 18g
Protein 10g 20%
Vitamin A 35% • Vitamin C 100%
Calcium
Vitamin D
Vitamin K
Riboflavin
Vitamin B ₆
Vitamin B12
Pantothenic Acid
lodine
Zinc
Manganese
Molyopenum
CT COLOR
A STORE

GELLAN GUM, CELLULUSE GUM, SUY LEGTHIN, MONO- AND DIGLYCERIDES, ASCORBIC ACID (VITAMIN C), SALT, POTASSIUM PHOSPHATE, CARRAGEENAN, CORN SYRUP SOLIDS, SUCRA-IDSE VITAMIN E ACETATE VITAMIN K. ACESII.

Diversity of Protists: Brown Algae – The Phaeophyta

- About 1,500 species
- Most live in colder ocean waters along rocky coasts
- No unicellular or colonial brown forms
- Morphology:
 - Some small forms with simple filaments
 - Others large multicellular forms that may exceed 200 m in length
- Pigments:
 - Chlorophylls a and c
 - Fucoxanthin (a type of carotinoid pigment) gives them their color
- Excess food stored as a carbohydrate called laminarin

Brown Algae

Diversity of Protists: Yellow-green Algae – The Chrysophyta

- Diatoms (formerly Bacillariophyta) are the most numerous unicellular algae in the oceans
- Significant portion of phytoplankton
- Cell wall
 - Two valves, with the larger valve acting as a lid (like a mint tin)
 - Contains silica
- Diatomaceous earth used as
 - Filtering agents
 - Sound-proofing materials
 - Polishing abrasives

	Drug Facts		
	Active ingredier	nt Purpose	
	Sodium fluoride (0.24%	6) Anticavity toothpaste	
	Use • aids in the pre	vention of dental decay	
1	Warnings Do not use if irritation occurs and persists. Keep out of reach of children under 6 years of age. If more than used for brushing is accidentally swallowed, get medical help or contact a Poison Control Center right away		
	Directions • supervise children as necessary until capable of using without supervision • do not swallow • rinse away toothpaste residue thoroughly after brushing		
	adults and children 2 years and older	brush teeth thoroughly, preferably after each meal or at least twice a day, or as directed by a dentist or physician	
	children under 6 years	instruct in good brushing and rinsing habits (to reduce swallowing)	
	children under 2 years	ask a dentist or physician	
	Inactive ingredie 407, sodium bicarbonate SD alcohol 38-B, flavor, polyethylene, phosphori	nts water, sorbitol, glycerin, hydrated silica, poloxamer e, zinc citrate trihydrate, PEG-32, sodium lauryl sulfate, hydrogen peroxide, cellulose gum, sodium saccharin, c acid, sucralose, blue 1 lake, blue 1, titanium dioxide.	
	Quastiana ar Ca		

Diatoms and Dinoflagellates

Diversity of Protists: The Euglenoids – Phylum Euglenophyta

- Small freshwater unicellular organisms
- Difficult to classify: mixotroph
- Have two flagella and an eyespot (photoreceptor)
- Chloroplasts:
 - Surrounded by three rather than two membranes
 - With a **pyrenoid** which produces an unusual type of carbohydrate called paramylon

The Animal-like:The Protozoa

Protozoa and **Human Disease**

Atlas of

Medical

GS

Plasmodium falciparum

Diversity of Protists: Zooflagellates – Phylum Zoomastigophora

- Colorless heterotrophs
- Most symbiotic and many parasitic
- Well known for causing various diseases in humans
 - Trypanosoma
 - African sleeping sickness Tsetse fly
 - Chagas disease Kissing bug
 - Giardia lamblia
 - Most common flagellate in human digestive tract
 - Causes severe diarrhea
 - Cysts are transmitted in contaminated water
 - Beavers are important reservoir hosts
 - Trichomonas vaginalis
 - Sexually transmitted protist,
 - Infects urogenital organs; a common cause of vaginitis

Diversity of Protists: Zooflagellates – Phylum Zoomastigophora

Trypanosoma brucei

Giardia lamblia

Trichomonas vaginalis

Zooflagellates

Diversity of Protists: The Amoeboids- Phylum Rhizopoda

- Amoeboids are protists that move and ingest their food with pseudopods
- They use phagolysosomes to digest food
 - Phagocytize food
 - Entamoeba histolytica a parasite of the human colon;
 - Causes amoebic dysentery
 - Can be fatal

Diversity of Protists: The Ciliates – Phylum Ciliophora

- Ciliates (Phylum Ciliophora) are among the most complex of the protozoans
 - Hundreds of cilia beat in coordinated rhythm
 - Most are holozoic, swallowing food whole
 - Divide by transverse binary fission during asexual reproduction

m

20 µm

- Two nuclei of differing types
 - Micronucleus Heredity
 - Macronucleus Metabolism

https://www.ncbi.nlm.nih.gov/pubmed/21387572

a. Paramecium

b. During conjugation two paramecia first unite at oral areas

Ciliates

The Fungus-like: The Slime and Water Molds

Diversity of Protists: Slime Molds

Feed like fungi and make spores but no cell wall and they have flagellated cells

Plasmodial Slime Molds - Phylum Myxomycota

- Body in the form of a plasmodium
 - Diploid, multinucleated, cytoplasmic mass
 - Enveloped by a slimy sheath
- Eventually produces sporangium which in turn produces spores

Cellular Slime Mold - Phylum Acrasiomycota

- Body in the form of individual amoeboid cells
- Later aggregate into pseudoplasmodium which then forms sporangium & spores

Plasmodial Slime Molds

Sporangia, Hemitrichia 1 mm

That was a lot but can you ...

- 1. Give an overview of the different types of algae? How they reproduce and explain their ecological and economic importance?
- 2. Explain what is so special about Euglenoids?
- 3. List different types of protozoa? Give example of diseases caused by some protozoa
- 4. Explain what flagella, cilia and pseudopods are and give example of organisms displaying them?
- 5. How are slime and water mold similar to fungi? What make them different from fungi?

Multicellular Green Algae

a. Chara, several individuals

b. One individual