Fernando Hernandez

TCET-2220
Homework \#2, Chapter 1
9/23/2013

1) Calculate the free space wavelength in meter for the following frequencies:
a) 2 kHz
b) 200 kHz
c) 20 MHz
d) $2 \mathbf{~ G H z}$
a) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{2 \times 10^{3}}=150 \mathrm{~km}$
b) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{200 \times 10^{3}}=1.5 \mathrm{~km}$
c) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{20 \times 10^{6}}=15 \mathrm{~m}$
d) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{2 \times 10^{9}}=15 \mathrm{~cm}$
2) Calculate the free space wavelength in meter for the following frequencies:
a) 80 kHz
b) 8 MHz
c) 800 MHz
d) $\mathbf{8 ~ G H z}$
a) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{80 \times 10^{3}}=3750 \mathrm{~m}$
b) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{8 \times 10^{6}}=37.5 \mathrm{~m}$
c) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{800 \times 10^{6}}=0.375 \mathrm{~m}$
d) $\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{8 \times 10^{9}}=3.75 \mathrm{~cm}$
3) Calculate the free space wavelength in miles for the frequency of 400 Hz .

$$
\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{400}=750 \mathrm{Km}=(750 \mathrm{~km})\left(\frac{1 \text { mile }}{1.609 \mathrm{~km}}\right)=466 \mathrm{miles}
$$

4) Calculate the free space wavelength in miles for the frequency of $1.5 \mathbf{~ k H z}$.
$\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{1.5 \times 10^{3}}=200 \mathrm{Km}=(200 \mathrm{~km})\left(\frac{1 \text { mile }}{1.609 \mathrm{~km}}\right)=124$ miles
5) A sinusoidal signal has a free-space wavelength of $\mathbf{8 0} \mathbf{~ m}$. calculate the frequency.
$f=\frac{C}{\lambda}=\frac{3 X 10^{8}}{80}=3.75 \mathrm{MHz}$
6) A sinusoidal signal has a free-space wavelength of $\mathbf{6 ~ m}$. calculate the frequency.
$f=\frac{C}{\lambda}=\frac{3 X 10^{8}}{80}=50 \mathrm{MHz}$
7) A digital signal utilizes pulses whose minimum widths are about 3 ns . Assuming the speed of light, determine the longest lengths of wire-pair that can be allowed based on the $\mathbf{1 0 \%}$ rule.
$t_{1}=(0.1)(3 n s)=0.3 n s$
$d=c t_{1}=\left(3 \times 10^{8}\right)\left(0.3 \times 10^{-9}\right)=9 \mathrm{~cm}$
8) The longest connecting wires in a digital system are about 20 cm . assuming the speed of light, determine the shortest acceptable pulse width based on the $\mathbf{1 0 \%}$ rule.
$d=c t_{1} \rightarrow t_{1}=\frac{d}{c}=\frac{20 \times 10^{-2}}{3 \times 10^{8}}=0.67 \mathrm{~ns}$
Width $=\frac{0.67 \times 10^{-9}}{0.1}=6.7 \mathrm{~ns}$
9) A communication system operates a frequency of 800 MHz . Assuming the speed of light, determine the length of connecting line that could be used without considering frequency- domain effects based on the $\mathbf{1 0 \%}$ rule.

$$
\lambda=\frac{C}{f}=\frac{3 \times 10^{8}}{800 \times 10^{6}}=0.375 \mathrm{~m}
$$

$$
d=(0.1)(0.373)=3.75 \mathrm{~cm}
$$

10) The length of a connecting cable between two points in a radio frequency system is 50 cm . Assuming the speed of light, determine the high operating frequency that should be used without considering frequency domain effects based on the $\mathbf{1 0 \%}$ rule.

$$
\begin{aligned}
& \lambda=\frac{d}{0.1}=\frac{50 \times 10^{-2}}{0.1}=5 \mathrm{~m} \\
& f=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{5}=60 \mathrm{MHz}
\end{aligned}
$$

11) In a coil, a current of 100 mA results in magnetic flux of $50 \mu \mathrm{~Wb}$. Determine the inductance.

Inductance $=\frac{\text { flux }}{\text { current }}=\frac{50 \mu \mathrm{~Wb}}{100 \mathrm{~mA}}=500 \mu \mathrm{H}$
12) A current of 4 mA is flowing in a $20 \mu \mathrm{H}$ coil. Determine the magnetic flux.

$$
\begin{aligned}
& \text { Inductance }=\frac{\text { flux }}{\text { current }} \\
& \rightarrow \text { flux }=(\text { current })(\text { Inductance })=\left(4 \times 10^{-3} \mathrm{~A}\right)\left(20 \times 10^{-6} \mathrm{H}\right)=80 \mathrm{nWb}
\end{aligned}
$$

13) In a capacitor, a voltage of 20 V result in charge storage of $5 \mu \mathrm{C}$. determine the capacitance.

$$
C=\frac{\text { Charge }}{\text { voltage }}=\frac{5 X 10^{-6} c}{20 \mathrm{~V}}=0.25 \mu F
$$

14) A capacitance of $40 \mu \mathrm{~F}$ is charged to a voltage of 12 V . determine the electric charge.

$$
\begin{aligned}
C=\frac{\text { Charge }}{\text { voltage }} & \rightarrow \text { charge }=(\text { Capacitance })(\text { voltage })=\left(40 \times 10^{-6}\right)(12 \mathrm{~V}) \\
& =0.48 \mathrm{mC}
\end{aligned}
$$

15) A lossless transmission line has an inductance of $320 \mathrm{nH} / \mathrm{m}$ and a capacitance of 57 pF / m. Determine the characteristic impedance.

$$
R_{o}=\sqrt{\frac{L}{C}}=\sqrt{\frac{320 X 10^{-9} \mathrm{H} / \mathrm{m}}{57 X 10^{-12} \mathrm{~F} / \mathrm{m}}}=74.93 \Omega
$$

16) A lossless transmission line has an inductance of $1.2 \mu \mathrm{H} / \mathrm{m}$ and a capacitance of 15 pF / \mathbf{m}. determine the characteristic impedance.

$$
R_{o}=\sqrt{\frac{L}{C}}=\sqrt{\frac{1.2 X 10^{-6} \mathrm{H} / \mathrm{m}}{15 X 10^{-12} \mathrm{~F} / \mathrm{m}}}=282.8 \Omega
$$

17) The dielectric constant of mica is 6 . Determine the permittivity.

$$
\epsilon=\epsilon_{r} \epsilon_{o}=(6)\left(8.84 X 10^{-12} \mathrm{~F} / \mathrm{m}\right)=5.3 \times 10^{-11} \mathrm{~F} / \mathrm{m}
$$

18) The permittivity of a material is $14 \times 10^{-12} \mathrm{~F} / \mathrm{m}$. determine the dielectric constant. $\epsilon=\epsilon_{r} \epsilon_{o} \rightarrow \epsilon_{r}=\frac{\epsilon}{\epsilon_{o}}=\frac{14 X 10^{-12} \mathrm{~F} / \mathrm{m}}{8.84 X 10^{-12} \mathrm{~F} / \mathrm{m}}=1.6$
19) The permeability of nickel is 800 . Determine the actual permeability. $\mu=\mu_{r} \mu_{0}=(800)\left(4 \pi X 10^{-7} \mathrm{H} / \mathrm{m}\right)=1 X 10^{-3} \mathrm{~F} / \mathrm{m}$
20) The permeability of a ferromagnetic material is $10^{-4} \mathrm{H} / \mathrm{m}$. Determine the relative permeability.
$\mu_{r}=\frac{\mu}{\mu_{0}}=\frac{10^{-4} \mathrm{H} / \mathrm{m}}{4 \pi X 10^{-7} \mathrm{H} / \mathrm{m}}=79.5$
21) Determine the velocity of propagation of the transmission line of problem 15.
$v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\left(320 X 10^{-9} \mathrm{H} / \mathrm{m}\right)\left(57 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)}}=2.34 \times 10^{8} \mathrm{~m} / \mathrm{s}$
22) Determine the velocity of propagation of the transmission line of problem 16.
$v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\left(1.2 X 10^{-6} \mathrm{H} / \mathrm{m}\right)\left(15 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)}}=2.36 \times 10^{8} \mathrm{~m} / \mathrm{s}$
23) The dielectric constant in a transmission line is 4.7 , and $\mu=\mu_{o}$. Determine the velocity of propagation.
$v=\frac{c}{\sqrt{\epsilon_{r}}}=\frac{3 \times 10^{8}}{\sqrt{(4.7)}}=1.38 \times 10^{8} \mathrm{~m} / \mathrm{s}$
24) The dielectric constant in a certain transmission line is 3 , and $\mu=\mu_{o}$. Determine the velocity of propagation.
$v=\frac{c}{\sqrt{\epsilon_{r}}}=\frac{3 \times 10^{8}}{\sqrt{(3)}}=1.73 \times 10^{8} \mathrm{~m} / \mathrm{s}$
25) A coaxial cable has the following specification: $\boldsymbol{R}_{\boldsymbol{o}}=73 \Omega$, and velocity of propagation $=2.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Determine L and C.
$L=\frac{R_{o}}{v}=\frac{73}{2.1 X 10^{8}}=347.6 \mathrm{nH}$
$C=\frac{1}{R_{o} v}=\frac{1}{(73)\left(2.1 \times 10^{8}\right)}=65.2 p F$
26) A transmission line has the following specification: $\boldsymbol{R}_{\boldsymbol{o}}=150 \Omega$, and velocity factor of $\mathbf{0 . 8}$. Determine L and C.
$L=\frac{R_{o}}{0.8 c}=\frac{150}{0.8\left(3 X 10^{8}\right)}=0.625 \mu \mathrm{H}$
$C=\frac{1}{0.8 c R_{o}}=\frac{1}{(0.8)\left(3 \times 10^{8}\right)(150)}=27.78 p F$
27) The lower end of a commercial AM band is about 550 KHz . AM station use "quarter wave" vertical antenna whose length are 0.25λ. Determine the length in meters of a vertical antenna operating at the lower end.
$0.25 \lambda=0.25 \frac{C}{f}=0.25 \frac{3 \times 10^{8}}{550 \times 10^{3}}=1.36 \mathrm{~m}$
28) The upper end of a commercial AM band referred to problem 27 is about 1610 KHz . Determine the length in meters of a vertical antenna operating at the upper end.
$0.25 \lambda=0.25 \frac{C}{f}=0.25 \frac{3 X 10^{8}}{1610 \times 10^{3}}=46.6 \mathrm{~m}$
29) One popular single antenna is the "half wave" horizontal antenna whose theoretical length is 0.5λ at the operating frequency. In practice, however, the antenna is usually shortened by about 5% due to the end effect. Determine the practical length in meters for a half wave antenna to provide optimum reception at the lower end of the commercial FM band, which is about 88 MHz .
$0.5 \lambda=0.5 \frac{C}{f}=0.5 \frac{3 \times 10^{8}}{88 \times 10^{6}}=1.7 \mathrm{~m}$

Pactical length $=1.7(1-0.05)=1.619 m$
30) Based on the discussion of problem 29, determine the practical length in meters for a half wave antenna to provide optimum reception at the upper end of the FM band, which is 108 MHz .
$0.5 \lambda=0.5 \frac{C}{f}=0.5 \frac{3 \times 10^{8}}{108 \times 10^{6}}=1.39 \mathrm{~m}$
Pactical length $=1.39(1-0.05)=1.319 m$
31) Show that the free space velocity of light in feet/second is very closed to 982×10^{6} ft / s.

$$
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(3.28 \mathrm{ft} / \mathrm{m})=984 \times 10^{6} \mathrm{ft} / \mathrm{s}
$$

32) Show that the free space wavelength in feet can be expressed as
$\lambda(f t)=\frac{982}{f(M H z)}$
$\lambda=\frac{c(\mathrm{~m} / \mathrm{s})}{f(\mathrm{~Hz})}=\frac{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(3.28 \mathrm{ft} / \mathrm{m})}{f(\mathrm{~Hz})}=\frac{984 \times 10^{6} \mathrm{ft} / \mathrm{s}}{f(\mathrm{~Hz})}=\frac{984}{f(\mathrm{MHz})}$
