Separation of variables - spherical coordinates -

azimuthal symmetry
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When boundary conditions are fixed on a spherical surface, it is more convenient to start from
the Laplace equation written in spherical coordinates
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We look here only at the special case of problems with azimuthal symmetry, in
which the potential does not depend on the azimuthal angle phi. (One can also deal
with the more complicated case in which there isn't an azimuthal symmetry. That
case involves spherical harmonic functions and is discussed in a graduate course.)

With azimuthal symmetry Laplace's equation simplifies to LAPCACE s
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We look for a factored solution of the form
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By plugging this Ansatz in the Laplace's equation and then dividing everything by
the potential, one finds
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The equation above is in reality the sum of two ordinary differential equations
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The reason for choosing the separation constant equal to I([+1) becomes obvious

when one solves the radial equation
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The solution for this equation is
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One can easily check that the function above does satisfy the equation
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The angular equation is more complicated and its solutions (for integer ) is given

by the Legendre polynomials which we already encountered.

The most general solution of Laplace equation in the azimuthal symmetry case is

then
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There are a few cases which are worth discussing in more detail

Inside a hollow sphere

Let's consider the class of problems in which the potential is specified on the
surface of a hollow sphere of radius R and one is asked to find the potential inside
the sphere.

In addition, we stick to the case of azimuthal symmetry. One should then set B_[ =
O in the previous general solution since the potential cannot blow up in the center
of the sphere, which is empty.
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With the additional boundary condition
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The coefficients in the expansion can be fixed by using the orthogonality of the
Legendre polynomials
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The integrals to fix the coefficients A are not always easy to calculate. Sometimes
however one can even fix the coefficients A by eye. Consider the case in which
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One sees immediately that
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Outside a sphere

We consider now the case in which the potential is again specified on the surface of
a sphere of radius R, but one wants to find the potential in the space outside the
sphere. Again, we consider a case that shows azimuthal symmetry. The potential
should die out at infinity, so that the general solution for this situation can be
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written as

In addition we impose the boundary condition
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One can use once more the orthogonality of Legendre's polynomials to find
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