Fourier Series

Wednesday, February 27, 2019 5:35 PM

A complete set of functions in the interval [0,a] is given by
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The functions are orthogonal
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However the functions are not yet normalized, in fact
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Therefore an orthonormal set of functions will be
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These functions satisfy the completeness relation
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This relation is not easy to prove. A possible way to look at it is to integrate both
sides between x' = O and x'= x_O to obtain
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and then draw the sum on the rhs to see that it approaches a step function.

We saw that a function in the interval [0,a] can be written in terms of the Fourier

sine series
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If one extends the domain of the function to [-a.a], the resulting function will be
odd, since the series involves only sine functions, which are odd
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It is possible to write a function in the interval [0,a] in terms of even functions, so
that when the domain (s extended to [-a,a] the resulting function is even. This
series (s called Fourier cosine series.
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A generic function in the interval [-a,a] is neither even nor odd, and any function
can be written as the sum of an even and an odd part. Therefore one can describe
a function in the interval [-a,a] with the Fourier trigonometric series, that is a
combination of the sine and the cosine series.
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Therefore the set of orthonormal functions in the interval [-a/2,a/2], of the same

length as the original interval that we considered is

One can then observe that
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The above should make it clear that another complete set of functions over the

interval [-a/2,a/2] is
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Problem: Check that the functions are correctly normalized, i.e.
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A generic function f can therefore be written as
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In taking the limit one traded a numerable parameter m with a continuous
parameter k (k can be a quantity with physical dimensions). The orthonormal set

of functions parameterized by k is therefore
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In this case, the orthogonality and completeness relations show complete symmetry
in the exchange x <--> k
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