Force and energy of a magnetic dipole in a magnetic
field
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We want to find out what is the force acting on a current density j placed in a magnetic field
B. The force acting on the current density can be obtained starting from Lorentz force
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We now assume that the curvent is localized in a small region survounding the
point r = R and that the magnetic field B varies slowly around that point. One can
then Taylor expand the magnetic field as follows

Bw= B(R) + [(F-R)- V] BeR) +

By inserting this expansion in the equation for the Lorentz force one finds
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The last step is due to the fact that the integral is over a total derivative and
therefore can be rewritten as a surface term. The surface term vanishes if we are
dealing with a localized current density and we integrate over a volume that
includes it completely.) Therefore
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At this stage it is necessary to show that the integrand can be rewritten as
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It is convenient to start the proof by writing the integrand in components
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We want to show that the above is equal to
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By using the identity in eq (3.22) of the book by Professor D. Tong
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(at this stage only B depends on the position so one can drop the prime with the
understanding that the derivatives are evaluated at the location of the dipole
moment)
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The force applied to a magnetic dipole by a magnetic field is therefore the gradient
of the function

U= - B.m

The function U is therefore the energy of the dipole in the magnetic field. The
energy is minimal if the dipole is aligned to the magnetic field. The magnetic field
exerts a torque on the dipole trying to align it to the field.

Observe that the force on the dipole is minus the gradient of the energy. This
means that is B is constant, there is no force acting on the dipole, because the
magnetic dipole is a constant vector and if B is constant its derivatives with

respect to the space coordinates are zero.

Force between two dipoles

Here we combine the equation for the magnetic field surrounding a dipole with the
equation for the force applied by a magnetic field on a dipole discussed above:
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Notice that the force is NOT directed along v.
Special cases
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