The electric displacement D
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We found that the polarization of the dielectric produces bound volume and surface charge
densities which are related to the polarization vector P:
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Now let's assume that the total charge density if the sum of a free charge density,
which we assume to control experimentally, and of the bound charge density.
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One then applies Gauss' law for the electric field
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The electric field in the equation above is the total field, due to both free and
bound charges. One can then rewrite the relation above as
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The differential equation satisfied by the electric displacement can be written in
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integral form as
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Notice that we did not consider the bound surface charge density in deriving the
differential equation for D. We cannot apply the equation for D exactly at the



surface, because the divergence of D includes a piece that comes from the
divergence of the polarization P. Since the polarization drops suddenly to zero
going from the inside to the outside of the material, its divergence is a delta
function, and therefore the [.hs. of the equation we found blows up. A more
realistic wmodel of what happens near the edge would be to have a bound volume
charge density that varies rapidly near the edge of the material but it is still a
smooth continuous function of the coordinate perpendicular to the surface. In that

picture one can apply the differential form of the equation for D everywhere.

Warning

We saw that

Ve e jf(g“’”) &’y
Eo 4T 2, )>7~713

Can one then conclude that
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One needs to know the divergence and the curl of a vector in order to fully
determine it. For the field E one has
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It is the curl equation that allows one to conclude that the electric field E can be
written as the gradient of a scalar potential and then to arrive to the integral
form written above. But the curl of the electric displacement D is not zero in

general
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There is no potential for D, and D is not fixed completely by the free charge
density per unit volume.



Electric displacement across a boundary surface

In analogy with what was done for the electric field, one can find out which
components of the electric displacement are continuous and which are
discontinuous across a boundary surface.
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Remember that we already know that



One can analyze in the same way the relation
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Remember that we already know that the component of E parallel to the surface

IS continuous

[‘QX(ER‘EL>:{ = 0



