Magnetic Dipoles - General Curvent Distribution
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Here we consider the multipole expansion of the vector potential due to a generic current
distribution. The goal is to calculate the expansion up to the dipole term, showing that there is
no monopole contribution. As in the simpler case of a circular curvent, one starts by expanding

the denominator in the integral expression for the vector potential.

p—

Acr) - jo\ “fl BEL.S {c{%'ﬁm (LQF'F SE
| 4T r >

Monopole term

In order to show that the first term vanishes, one observes that (using components

notation)
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Consequently, one can rewrite the first term of the expansion as follows (in

components)
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The integrals of a total derivative can be evaluated with the Gauss theorem. If the
current density is localized, the integral over the surface of the gaussian region,
chosen to be equal to R*3 (all space) is zero.

Dipole term

In order to deal with the second term it is convenient to start from the identity
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The above can be used to write
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By using the vector identity

Ax(BxC)= B(AC)-C(AB)

A
One can rewrite the integral as l )
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We now need to check that this generic definition of the magnetic moment is
consistent with the definition m = | S in the simpler case of a circular loop of
current. If the circle has radius a and lies on the x-y plane
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