Completeness and orthogonality of functions
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The method of separation of functions allows one to identify classes of functions which are

complete and orthogonal on a given interval.

Completeness: A set of functions f_n defined on a given interval is said to be complete if any
"reasonably smooth" function g defined on the same interval can be written as a linear

combination of the functions fn
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Is a set of complete functions over the interval [0,a]. Typically the mathematical
proof that a set of functions is complete is difficult.

Orthogonality: A set of functions f_n is said to be orthogonal over an interval [a,b]
if the integral of the product of two different functions of the set over the interval
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The sine functions mentioned above are orthogonal over the interval [a,b]



It is in general useful to work with a set of orthonormal functions, by requiring
that the integral of the function over the interval [a,b] is normalized to 1
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We use the absolute value because the function can in general return complex

values
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The orthogonality and normalization conditions can be put together in a single

orthonormality condition
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Let's assume that we want to approximate a function g with a combination of a

finite number N of U_n functions:
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One can then choose the value of the coefficients a_n by minimizing the mean

square ervor defined as
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The coefficients that minimize M_n are
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Proof

(suppress arguments, use Einstein's convention for repeated indices)
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Consider the last integral
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If the set of functions is complete in the sense defined above, the approximation or
the function g as a sum of functions U_n improves as N grows. Formally one can
say that a set of functions is complete an interval [a,b] if
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In this case, as stated above, one can rewrite a function f defined over the interval

[a,b] as the sum of a series depending on the complete set of functions U_n
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Now let's replace the second equation above in the first one
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The equation above is satisfied if the completeness (or closure) relation holds:
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Compare the above with the orthogonality relation
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In the orthogonality relation one integrates (sums over a continuous variable) x, in
the completeness one sums over n. The role of x and n is "interchanged" in the two
relations.



