Multipole expansion - monopole and dipole terms
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The Multipole expansion is typically dominated by the monopole term
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This is exactly the same potential we would find if all of the charge was

concentrate in one point. If the total charge is zero, the dominant term is the
dipole.
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Where « is the angle between the vectors r and r'. One can therefore replace

r' cos & as follows
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The dipole potential can then be written as
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The dipole moment of a collection of point-charges is therefore given by
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Notice that the potential

Is just the approximate potential for a physical dipole, not the exact one. In order
to obtain a perfect dipole potential one needs to take the limits d --> 0, g --> =
with gd = p constant in the physical dipole case.

Dipoles are vectors and they must be added as vector. For this reason the following

charge distribution has zero dipole moment
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This distribution is called physical quadrupole.



In the Multipole expansion we can rewrite the quadrupole term by introducing a
quadrupole moment (which is a tensor, rather than a vector)
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Notice that the quadrupole tensor is symmetric and traceless.

However, things can also be organized in a different way
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Coordinate system and Multipole expansion

Consider a point like charge which is not placed at the origin of a reference frame
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The potential in the point P is not a pure monopole, since we also have the dipole
contribution p = q v . Obviously, one could rewrite the potential as a pure
monopole by moving the origin of the frame of reference to the position of the

charge, so that the potential would become
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As expected.



In general the dipole moment (and higher moments) depend on the choice of the
frame of reference. The exception to this rule is the case in which the monopole
contribution is zero. In fact let's imagine to shift the origin of the frame of

reference by a vector a
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So if the monopole is zero, the dipole moment is numerically independent from the

choice of the reference frame.

Example

Calculate the quadrupole moment tensor with respect to the center of the charge
distribution for the spherically symmetric charge distribution
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In a previous lecture we already showed that this charge distribution has zero
monopole and dipole contributions. We actually proved that the dipole contribution
is zero for a point along the z axis. However, it is possible to prove that the dipole

vector is indeed zero:
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One can then calculate the quadrupole tensor
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If we look at a point on the z axis (theta = O) we find the same potential we
already found in the problem we solved in a previous lecture.

One can show in general that the quadrupole tensor for a spherically symmetric
charge distribution (calculated with respect to the center of the charge
distribution) is proportional to the identity matrix
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The tensor is diagonal, now let's prove that all of the entries are the same
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The tensor is diagonal




