Dirac delta function
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One dimensional Dirac delta function
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The Delta function is not a function (it is not finite at x = O); mathematicians refer

to it as a generalized function or distribution. It is properly defined as the limit of
a series of functions.

Example 1: The delta function is the limit for n--> = of the rectangles Rn, with

height n and basis 1/n ,

=\~




Example 2: The delta function is the limit for n --> = of the series of triangles
T_n, that are isosceles triangles with height n and base 2/n
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Properties

If f(x) is a well behaved function (it is sufficient for it to be continuous) then
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The integrand does not need to extend to infinity
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By shifting the argument of the delta function one finds
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Another important property is that
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The upper sign applies to the case of positive k, the lower sign to the case of
negative k. One can then rewrite everything as
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This is equivalent to set
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Three dimensional delta function

The three dimensional delta function is defined as
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Delta function representation

A useful representation of Dirac delta function is
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Should be familiar from Fourier transform

Fourier transform
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Inverse Fourier transform






