Maxwell's equations in integral form

Saturday, September 1, 2018

8:45 AM

ME are often expressed in integral form

Gauss' law for E

Integrate over a finite volume \vee bound by a closed surface ∂V

$$\nabla \cdot \overline{E} = \frac{\beta}{\varepsilon} \longrightarrow \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{\varepsilon} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{\varepsilon} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{\varepsilon} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{\varepsilon} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{\varepsilon} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{\varepsilon} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{V} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{V} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{V} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

$$V = \int_{V} \nabla \cdot \overline{E} \, d^{3}r = \int_{V} \overline{E} \cdot ds = \frac{1}{\varepsilon} \int_{V} \beta \, d^{3}r$$

The flux of E through the surface of V is proportional to Q

Gauss' law for B

$$\nabla \cdot \overline{B} = 0 \longrightarrow \int_{V} \nabla \cdot \overline{B} \, d^{3}c = \int_{\partial V} \overline{B} \cdot d\overline{s} = 0 \longrightarrow \Phi_{B} = 0$$

The flux of B over a closed surface is zero, magnetic field lines are loops (closed lines)

Ampere-Maxwell's law

$$\nabla \times \overline{B} = \frac{1}{c^2} \frac{\partial}{\partial t} \overline{E} + \mu_0 \overline{j}$$

Integrate over a surface S bound by a closed line 25

$$\int_{S} (\nabla \times \overline{B}) \cdot d\overline{s} = \int_{\partial S} \overline{B} \cdot d\overline{t} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{\partial S} \overline{B} \cdot d\overline{t} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{\partial S} \overline{B} \cdot d\overline{t} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{\partial S} \overline{B} \cdot d\overline{t} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{S} \overline{B} \cdot d\overline{t} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{S} \overline{B} \cdot d\overline{s} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{S} \overline{B} \cdot d\overline{s} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\int_{S} \nabla \times \overline{B} \cdot d\overline{s} = \int_{S} \overline{B} \cdot d\overline{s} = \mu_o \int_{S} d\overline{s} \cdot \left(\frac{\partial \overline{\epsilon}}{\partial \epsilon} \epsilon_o + \overline{j} \right)$$

$$\oint_{\partial S} \overline{B} \cdot d\overline{\ell} = \mu_o I$$

I is the total current through the surface S. Notice that part of I comes from the Maxwell's displacement current $\epsilon_0 \frac{\partial \overline{\epsilon}}{\partial \epsilon}$

Faraday's induction law

$$\triangle \times \underline{E} = -\frac{9\underline{g}}{9\underline{E}}$$

As for the Ampere Maxwell's case, integrate over a surface S bound by a closed line 25

$$\int_{S} (\nabla \times \overline{E}) \cdot d\overline{S} = \oint_{\partial S} \overline{E} \cdot d\overline{\ell} = -\int_{S} \left(\frac{\partial}{\partial t} \overline{B} \right) \cdot d\overline{S}$$
 (I)

If the surface S does not change in time, one can exchange integration and time derivative to find

$$\oint_{\partial S} \overline{E} \cdot d\overline{\ell} = -\frac{d}{dt} \int_{S} \overline{B} \cdot d\overline{S} \longrightarrow \mathcal{E} = -\frac{d}{dt} \Phi_{B}$$

$$\mathcal{E} = -\frac{d}{dt} \Phi_{B}$$

The result remains valid also if S changes in time, but one needs to be careful with vector calculus and with the definition of e.m.f.

Let's start by considering the following theorem valid for a vector B (proof in Zangwill 1.4.5)

$$\frac{d}{dt} \int_{S(t)}^{\overline{B}} d\overline{s} = \int_{S(t)}^{\overline{A}} d\overline{s} \cdot \left\{ \frac{\partial \overline{B}}{\partial t} + \overline{v}_{c} \left(\nabla \cdot \overline{B} \right) - \nabla \times \left(\overline{v}_{c} \times \overline{B} \right) \right\}$$

In the equation above \overline{V}_c is the velocity of a given differential element $d\overline{S}$ of the surface.

If we identify the vector B with the magnetic field, the relation above simplifies because the divergence of B is zero.

$$\frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{s} = \int_{S(t)} d\overline{s} \cdot \frac{\partial \overline{B}}{\partial t} - \int_{S(t)} \nabla_{x} (\overline{v}_{c} \times \overline{B}) \cdot d\overline{s}$$

$$\frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{S} = \int_{S(t)} d\overline{S} \cdot \frac{\partial \overline{B}}{\partial t} - \oint_{S(t)} (\overline{v}_c \times \overline{B}) \cdot d\overline{\ell}$$

$$\Rightarrow \int_{S(t)} d\overline{S} \cdot \frac{\partial \overline{B}}{\partial t} = \frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{S} + \oint_{S(t)} (\overline{v}_c \times \overline{B}) \cdot d\overline{\ell}$$

$$\Rightarrow \int_{S(t)} d\overline{S} \cdot \frac{\partial \overline{B}}{\partial t} = \frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{S} + \oint_{S(t)} (\overline{v}_c \times \overline{B}) \cdot d\overline{\ell}$$

$$\Rightarrow \int_{S(t)} d\overline{S} \cdot \frac{\partial \overline{B}}{\partial t} = \frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{S} + \oint_{S(t)} (\overline{v}_c \times \overline{B}) \cdot d\overline{\ell}$$

$$\Rightarrow \int_{S(t)} d\overline{S} \cdot \frac{\partial \overline{B}}{\partial t} = \frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{S} + \oint_{S(t)} (\overline{v}_c \times \overline{B}) \cdot d\overline{\ell}$$

Now replace (II) in (I)

$$\oint_{\partial S(t)} \overline{E} \cdot d\overline{\ell} = -\frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{s} - \oint_{\partial S(t)} (\overline{v}_c \times \overline{B}) \cdot d\overline{\ell}$$

$$\oint_{\partial S(t)} (\overline{E} + \overline{v}_c \times \overline{B}) \cdot d\overline{\ell} = -\frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{s}$$

$$\int_{\partial S(t)} (\overline{E} + \overline{v}_c \times \overline{B}) \cdot d\overline{\ell} = -\frac{d}{dt} \int_{S(t)} \overline{B} \cdot d\overline{s}$$
(III)

If ∂S is assumed to coincide with a loop of conducting wire which can change shape in time, \overline{V}_c is the local velocity of the heavy ions which give the material mass and rigidity. Electrons carrying current in the wire move with respect to the ions with a drift velocity

$$\overline{V}_{e}(\overline{r},t) \equiv \overline{V}_{c}(\overline{r},t) + \overline{V}_{d}(\overline{r},t)$$

e velocity

drift velocity

However the drift velocity is parallel to the line element dl, therefore

$$(\overline{v}_d \times \overline{B}) \cdot d\overline{\ell} = 0$$

One can then replace the drift velocity with the electron velocity in (III)

$$\int d\vec{r} \cdot (\vec{E} + \vec{v}_e \times \vec{B}) = -\frac{d}{dt} \phi_B$$

$$\int d\vec{r} \cdot (\vec{E} + \vec{v}_e \times \vec{B}) = -\frac{d}{dt} \phi_B$$
FARADAY'S ELECTROMOTIVE
FORCE