Charged line segment

Calculate the electric potential due to a charged line segment of length L in a generic point P in the space surrounding the segment. The linear charge density is uniform. What is the shape of the equipotential surfaces?

Hints:

Use cylindrical coordinates. Use the integral

$$
\int d z \frac{1}{\sqrt{a^{2}+z^{2}}}=\ln \left(z+\sqrt{a^{2}+z^{2}}\right)
$$

Rewrite the potential in terms of the variables

$$
u=\frac{1}{2}\left(d_{<}+d_{>}\right), \quad t=\frac{1}{2}\left(d_{<}-d_{>}\right) .
$$

Prove that the potential depends only on u.

