Unbounded orbits

Wednesday, October 9, 2019 9:49 AM

One needs to analyze what happens to the orbit when the parameter $\varepsilon>1$. From the previous discussion one sees that in that case the energy is larger than zero. In addition there will be two values of the angle ϕ at which r will go to infinity

$$r(\phi) = \frac{c}{1+\epsilon \cos \phi}$$

$$r \rightarrow \infty \quad if \quad \cos \phi = -\frac{1}{\epsilon}$$

The smallest value of ε at which this can happen is 1. In that case r diverges for $\phi = \pi$, $-\pi$. In that case, by rewriting the equation of the orbit in cartesian coordinates one finds

PARABOLA

For an $\varepsilon > 1$ one finds instead

$$r(1 + \epsilon \cos \phi) = c$$

$$\sqrt{x^{2} + y^{2}} + \epsilon x = c$$

$$x^{2} + y^{2} = (c - \epsilon x)^{2} \longrightarrow x^{2} + y^{2} = c^{2} + \epsilon^{2} x^{2} - 2c \epsilon x$$

$$(1 - \epsilon^{2}) x^{2} + 2c \epsilon x + y^{2} = c^{2}$$

For hyperbolas the angular range of the orbit is limited

$$-\phi_{max} \leq \phi \leq \phi_{max} \quad \text{with} \quad \cos\phi_{max} = -\frac{1}{\epsilon}$$

In summary, depending on the value of ε , one can have the following set of orbits

