Unbounded orbits
Wednesday, October 9, 2019 9:49 AM

One needs to analyze what happens to the orbit when the parameter $\varepsilon>1$. From the previous discussion one sees that in that case the energy is larger than zero. In addition there will be two values of the angle ϕ at which r will go to infinity

$$
\begin{array}{r}
r(\phi)=\frac{c}{1+\epsilon \cos \phi} \\
r \rightarrow \infty \text { if } \cos \phi=-\frac{1}{\epsilon}
\end{array}
$$

The smallest value of ε at which this can happen is 1 . In that case r diverges for ϕ $=\pi,-\pi$. In that case, by rewriting the equation of the orbit in cartesian coordinates one finds

$$
\left.\begin{array}{l}
x=r \cos \phi \\
y=r \sin \phi
\end{array}\right\} \rightarrow \begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \tan \phi=\frac{y}{x}
\end{aligned}
$$

$$
\begin{aligned}
& r(1+\cos \phi)=c \\
& \sqrt{x^{2}+y^{2}}+x=c \\
& x^{2}+y^{2}=(c-x)^{2} \longrightarrow y^{2}=c^{2}-2 c x
\end{aligned}
$$

For an $\varepsilon>1$ one finds instead

$$
\begin{aligned}
& r(1+\epsilon \cos \phi)=c \\
& \sqrt{x^{2}+y^{2}}+\epsilon x=c \\
& x^{2}+y^{2}=(c-\epsilon x)^{2} \rightarrow x^{2}+y^{2}=c^{2}+\epsilon^{2} x^{2}-2 c \epsilon x \\
& \left(1-\epsilon^{2}\right) x^{2}+2 c \epsilon x+y^{2}=c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+\frac{2 c \epsilon x}{1-\epsilon^{2}}+\frac{y^{2}}{1-\epsilon^{2}}=\frac{c^{2}}{1-\epsilon^{2}} \\
& x^{2}+\frac{2 c \epsilon x}{1-\epsilon^{2}}+\frac{c^{2} \epsilon^{2}}{\left(1-\epsilon^{2}\right)^{2}}+\frac{y^{2}}{1-\epsilon^{2}}=\frac{c^{2}}{1-\epsilon^{2}}+\frac{c^{2} \epsilon^{2}}{\left(1-\epsilon^{2}\right)^{2}} \\
& \left(x-\frac{c \epsilon}{\epsilon^{2}-1}\right)^{2}-\left(\frac{y}{\sqrt{\epsilon^{2}-1}}\right)^{2}=\frac{c^{2}}{\left(1-\epsilon^{2}\right)^{2}} \sqrt{k e m} \epsilon^{2}-1>0 \\
& \delta \equiv \frac{c \epsilon}{\epsilon^{2}-1} \quad \beta=\frac{c}{\epsilon^{2}-1} \\
& \left(x-\frac{c}{\epsilon^{2}-1}\right. \\
& \frac{(x-)^{2}}{\beta^{2}}=1
\end{aligned}
$$

For hyperbolas the angular range of the orbit is limited

$$
-\phi_{\max } \leq \phi \leq \phi_{\max } \quad \text { with } \quad \cos \phi_{\max }=-\frac{1}{\epsilon}
$$

In summary, depending on the value of ε, one can have the following set of orbits

rem

$$
\begin{array}{r}
E=\frac{\gamma^{2} \mu^{2}}{2 l^{2}}\left(\epsilon^{2}-1\right) \quad c=\frac{l^{2}}{\gamma \mu}=\frac{l^{2}}{G m_{1} m_{2} \mu} \\
c=\text { distance sun-comet when } \phi=\frac{\pi}{2}
\end{array}
$$

