Euler Lagrange equation
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Here we want to solve in general terms the problem of choosing a path that minimizes the
integrals defined in the two examples discussed above, namely, what is the shortest distance
between two points in a plane and what is the shortest time light will take to go from a given

initial point to a given final point.

Both problems require to minimize an integral of the general form
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As a first step and unavoidable step, we try to figure out for which paths y(x) S
has a stationary value. Let's suppose that a certain (unknown) y(x) corresponds to
the minimum value of S. If we deform slightly the path y(x), then S will have a
larger value than the one it has for the curve y(x) that corresponds to the

minimum.
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The endpoints of the curve, and of the integral, are however fixed
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One can actually parameterize a family of curves that are "close" to y(x) but do not
coincide with y(x) by introducing the parameter x
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If one inserts Y in the integral S, also the latter will depend on «
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S is now a regular function of . Consequently, it will have a stationary point when
its derivative vanishes
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Now apply integration by parts to the secomd term in the round bracket
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Since we are dealing with continuous functions, and we are free to choose an

arbitrary function n, the integral will be zero only if
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Let's consider again the last logical step. Can one have

XX

J 7 () Fe) dx = o

for arbitrary n if F is not equal to zero? Remember the assumption that we are
dealing with smooth continuous functions. If F is not zero for every x, we can
choose a v that has the same sign of F in each point x. Therefore, the integrand
will be positive in each point where F is different from zero. This implies that the
integral will only receive positive contributions, so it cannot be zero. We reached a
contradiction. Consequently our assumption that the integral is zero is
incompatible with the assumption that F is not zero everywhere. Consequently
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Consequently, by requiring that y(x) satisfies the Euler Lagrange equation we can
find the solution of the problems which we are trying to solve. As a first
application let's go back to the case of the problem of finding the shortest path

between two points
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Y = Kx + x,

Impose the boundary conditions
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