Euler Lagrange equation

Here we want to solve in general terms the problem of choosing a path that minimizes the integrals defined in the two examples discussed above, namely, what is the shortest distance between two points in a plane and what is the shortest time light will take to go from a given initial point to a given final point.

Both problems require to minimize an integral of the general form

$$
S=\int_{x_{1}}^{x_{2}} f\left[y(x), y^{\prime}(x), x\right] d x
$$

As a first step and unavoidable step, we try to figure out for which paths $y(x)$ S has a stationary value. Let's suppose that a certain (unknown) $y(x)$ corresponds to the minimum value of S. If we deform slightly the path $y(x)$, then S will have a larger value than the one it has for the curve $y(x)$ that corresponds to the minimum.

$$
y(x) \rightarrow S_{\min }, \quad y(x)+\eta(x) \rightarrow S>S_{\min }
$$

The endpoints of the curve, and of the integral, are however fixed

$$
\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0
$$

One can actually parameterize a family of curves that are "close" to $y(x)$ but do not coincide with $y(x)$ by introducing the parameter α

$$
Y(x) \equiv y(x)+\alpha \eta(x)
$$

If one inserts Y in the integral S, also the latter will depend on α

$$
\begin{aligned}
S(\alpha) & \equiv \int_{x_{1}}^{x_{2}} f\left(Y, Y^{\prime}, x\right) d x \\
& =\int_{x_{1}}^{x_{2}} f\left(y+\alpha \eta, y^{\prime}+\alpha \eta^{\prime}, x\right) d x
\end{aligned}
$$

S is now a regular function of α. Consequently, it will have a stationary point when its derivative vanishes

$$
\left.\frac{d S}{d \alpha}\right|_{\alpha=0}=\int_{x_{1}}^{x_{2}} \frac{\partial f}{\partial \alpha} d x=\int_{x_{1}}^{x_{2}}\left(\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}\right) d x=0
$$

Now apply integration by parts to the second term in the round bracket

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}}\left(\frac{d}{d x} \eta(x)\right) \frac{\partial f}{\partial y^{\prime}} d x= & {[\underbrace{\left[\eta(x) \frac{\partial f}{\partial y^{\prime}}\right]_{x_{1}}^{x_{2}}-\int_{x_{1}}^{x_{2}} \eta(x) \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) d x}} \\
& =0 \operatorname{since} \\
& \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left.\frac{d}{d \alpha} S\right|_{\alpha=0}=\int_{x_{1}}^{x_{2}}\left(\eta \frac{\partial f}{\partial y}-\eta \frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}\right) d x=0 \\
& \xrightarrow{\left(\int_{x_{1}}^{x_{2}} \eta(x)\left(\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}\right) d x=0\right.}
\end{aligned}
$$

Since we are dealing with continuous functions, and we are free to choose an arbitrary function n, the integral will be zero only if

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0 \quad \text { EULER LAGRANGE }
$$

Let's consider again the last logical step. Can one have

$$
\int_{x_{1}}^{x_{2}} \eta(x) F(x) d x=0
$$

for arbitrary η if F is not equal to zero? Remember the assumption that we are dealing with smooth continuous functions. If F is not zero for every x, we can choose a η that has the same sign of F in each point x. Therefore, the integrand will be positive in each point where F is different from zero. This implies that the integral will only receive positive contributions, so it cannot be zero. We reached a contradiction. Consequently our assumption that the integral is zero is incompatible with the assumption that F is not zero everywhere. Consequently

$$
\int_{x_{1}}^{x_{2}} \eta(x) F(x) d x=0 \quad \forall \eta \rightarrow F(x)=0
$$

Consequently, by requiring that $y(x)$ satisfies the Euler Lagrange equation we can find the solution of the problems which we are trying to solve. As a first application let's go back to the case of the problem of finding the shortest path between two points

$$
\begin{aligned}
& L=\int_{1}^{2} d s=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \rightarrow f(x) \equiv \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
& \frac{\partial f}{\partial y}=0 \quad \frac{\partial f}{\partial y^{\prime}}=\frac{1}{2} \frac{2 y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}=\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}} \\
& \frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}\right)=0 \\
& \rightarrow y^{\prime}=C_{1} \sqrt{1+\left(y^{\prime}\right)^{2}} \rightarrow\left(y^{\prime}\right)^{2}=C^{2}\left(1+\left(y^{\prime}\right)^{2}\right) \\
& \left(y^{\prime}\right)^{2}\left(1-C^{2}\right)=G^{2} \rightarrow\left(y^{\prime}\right)^{2}=\frac{C^{2}}{1-C^{2}} \\
& \rightarrow \quad y^{\prime} \equiv K \leftarrow \text { constant }
\end{aligned}
$$

$$
y=k x+x_{0}
$$

Impose the boundary conditions

$$
\begin{aligned}
& y\left(x_{1}\right)=y_{1} \rightarrow y_{1}=k x_{1}+x_{0}, y\left(x_{2}\right)=y_{2} \rightarrow y_{2}=k x_{2}+x_{0} \\
& y_{2}-y_{1}=k\left(x_{2}-x_{1}\right) \rightarrow k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x_{1}+x_{0} \rightarrow x_{0}=\frac{y_{1} x_{2}-y_{1} x_{1}-y_{2} x_{1}+y_{1} x_{1}}{x_{2}-x_{1}} \\
& \quad x_{0}=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}} \\
& y=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x+\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Check

$$
x \rightarrow x_{2} \quad y=\frac{y_{2} x_{2}-y_{1} x_{2}+y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}=y_{2} \quad
$$

