
In order to keep an oscillator in motion in presence of a damping force, it is necessary to supply 

a driving force. For example, the push that is supplied by a person on the ground to keep a 

swing in motion is an example of a driving force. The equation of motion satisfied by a 

damped-driven oscillator can then be written as

The equation can be rewritten by dividing each term by the mass, so that the 

coefficient of the second derivative is normalized to 1.

This is an inhomogeneous linear differential equation. Indeed one can define a 

linear differential operator D as follows

The operator is linear because, given two solutions of the homogeneous equation 

(damped but not driven oscillator) any linear combination of the two solutions is 

still a solution of the homogeneous equation

The equation that we want to solve is an inhomogeneous equation because the 

operator D applied to the function x is not equal to zero
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Solution of the inhomogeneous equation 

If one manages to find one solution of the inhomogeneous equation and a general 

solution of the homogeneous equation, then one can find all solutions of the 

inhomogeneous equation. In fact

The sum of the particular and homogeneous solutions depends on two integration 

constants, therefore it is already the most general solution of a second order 

differential equation (not a rigorous proof of course!)

Case of sinusoidal driving force

It is convenient to consider the case in which the driving force is a sinusoidal 

function. This has two purposes: A sinusoidal function reasonably approximates 

most periodic functions. Secondly, any driving force can be written by means of 

Fourier analysis as a superposition of sinusoidal forces. The differential equation 

that one needs to solve is then

In order to solve the equation, it is convenient to combine the equation above with 

the related equation

One can then define a complex function z(t) that satisfies a differential equation 

where one finds an exponential rather than a sinusoidal function.



Since the derivative of an exponential is the exponential itself, one can try the 

Ansatz

It is convenient to write the constant C in terms of a real amplitude and a phase.



One can now write the solution of the complex equation and then take the real 

part of it as the particular solution of the equation for the oscillator driven by a 

sinusoidal driving force

The general solution for the driven oscillator can then by written by adding to the 

particular solution found above the general solution for the homogeneous part of 

the equation, namely the equation for the damped oscillator.

As the transient part dies out with time, the oscillator will eventually oscillate at 

the driving frequency ω.

Resonance

By looking at the expression of the amplitude A in the damped-driven oscillator 

one can see that the amplitude reaches its maximum when the natural frequency 

and the driving frequency are close to each other:

If one keeps ω fixed and one can vary the natural frequency the maximum 

amplitude is obtained for 



If one instead varies ω keeping the natural frequency fixed, the maximum of the 

amplitude is reached for

Indeed by studying the second derivative of the denominator one finds



The situation can be illustrated as follows

Width of the resonance 

In order to get a sense of how wide or narrow a resonance is, it is instructive to 

study the width of the amplitude squared half way to the maximum: This is called 

the full width at half maximum or FWHM

For a small damping factor β the maximum is obtained for ω equal to the natural 

frequency, therefore



Consequently, the FWHM is approximately 2β. The smallest the damping factor, 

the narrower the resonance.


