Motion of a spinning top
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It is interesting to return to the motion of a spinning top and apply to it the language of the
Euler angles and the Lagrangian approach.
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The Lagrangian of the system will be
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The generalized coordinates in the Lagrangian are Euler's angles. One can then look
at the three Lagrange equations that can be obtained from the Lagrangian. Notice
that @ and ¢ are ignorable coordinates.
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The z component of the angular momentum is conserved. This is expected since the
torque due to gravity does not have a component parallel to the z axis.

d gy
oltaq/ u{/‘

doL T
P(-{/ = gq/ = >\5(Lf/+¢605%) = const,

L__/—’ﬁ/—‘/

Compohemt of E afomg é\s T Lg

Also the fact that the component of angular momentum along the body axis is
conserved (s expected. Indeed the torque is also perpendicular to the body axis.

Steady precession

We want to investigate if a precession motion at fixed 0 along the z axis is possible.
It was already established that
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Therefore, if 8 can be constant, then the time derivative of ¢ would also be
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constant. In other words if the precession motion describes a cone of angle 26
along the z axis, then the angular velocity along the z axis is constant. This angular
velocity can be determined from the Lagrange equation for 6.

/\| ca = 0= )\{ QZSL-H%COS’%— /\3 ((f/ + 4(05%) (L <inT

- —

+M3Q5(n% W&

/\,_(chos%f)3 w, (L + M%R = 0



L
= Ayw, + \[\/\;%Z-quRx\(cas%

. /\]€osﬁ

If w_3 is large the two roots are real
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Notice that the second larger precession velocity does not depend on g, so it should
be present even in absence of gravity. Indeed it is exactly the free precession for a
symmetric body that was found when considering Euler equations for zero torque.

Nutation

In general, while the top processes around the vertical axis, also the angle 6 can
vary. Thus the body axis can move closer and farther from the z axis in a motion
called nutation. To study this motion it is convenient to rewrite the Lagrange

equation for 0 in terms of the conserved momenta



ng /\BCL{;—ch‘DcOg@')
L?:: %l(ﬁs[mza‘%— LgCoS‘%

ij_ L%——(_BCos@-
)\( Sflflzg—

L,-L s cosT
/\\ Sc.lr‘\?@-

. I )\ L, - cosg >
< —_ (__ - ——i~ ¢ o 8—
H/ Ay ( i A Sc"mz& TP

COS%

1)

Lﬁ /\5({/ + /\3

By inserting these expressions in the equation for 6 one finds a reqular second
order differential equation that can be in principle be solved, at least numerically.

However, it is possible to obtain qualitative information about the motion in an

easier way. Indeed the total energy, written in terms of L_3 and L _z is
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The problem is now one dimensional (the energy depends only on 0). One can then
define an effective potential and then define an effective potential and plot it

Uoer (9) - (Cr-LyeosD) L,

~+ +M3RCOS%
2 A st D 2N,

QOliverjes ot Do and D=1
4 \w/

oy Sl ios

The angle 6 oscillates back and forth between a minimum and a maximum. One

can then look back at the time derivative of ¢.

qé _ L% ' Lg (os%
}\lgfhzﬁ' ‘
E? le(>'L3) d'9>0 D(V\fazjg or CP<O B(Wbtjs

nuta t\'om

mot fon S /



Q

'S
’é_'e\a 1

(F

)

\o1{

-
-7 N\ A
- 7
J
L 9
>
J A%
D
=
~J
Y
2V




