Euler's equations
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Here we want to derive Euler's equations, which apply to the rotation of an object about a fixed
point or to the rotations of an object around its center of mass. In a certain sense these
equations can be considered as the equivalent of Newton's second law for the case of rotational

motion.

Since the inertia tensor is diagonal when calculated with respect to the principal axes of the
body, we want to use the principal axes as our frame of reference. However, these axes are
fixed in the rotating body. Consequently we need to deal with a rotating non inertial frame of
reference. We need also to consider a second inertial frame in which the body is rotating. In this
frame, Newton's laws of motion hold in their traditional form. The inertial frame is referred to

as the space frame. The frame of the principal axes is called the body frame.
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The angular momentum of the body, measured in the body frame is
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With respect to the space frame instead, one can write the usual equation linking

the time derivative of the angular momentum with the torque
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At this stage one needs to relate the time derivative of the angular momentum in
the space frame with the time derivative of the angular momentum in the body

frame. This relation (s
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Proof
It is convenient to start by drrawing the two frames in such a way that they have a
common origin Dk "
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The angular momentum in the body frame can be written as

L=t

The time derivative in the body frame is therefore
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If one wants the time derivative of L in the space frame, one should take into
account the fact that in the space frame also the unit vectors e_i are changing in

time, therefore
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The derivative in the second term in the equation above can be easily evaluated by
observing that the body frame rotates with angular velocity w in the space frame.



Consequently

(C{e{) = B Xé\(‘
Glt SPBLC

2 L. (de‘_) = Z Lo (x&) = @XZ L2, = Tx L

O(‘E §P)¢¢ \

So that finally one can conclude that
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Notice that this proof can be applied to any vector in the body frame, it is not

specific to the case of the angular momentum.

Now one can introduce the relation above in Newton's second law for rotational

motion
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One can now write the equation above in components, taking the components with

respect to the principals axes of the body.
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In geneval, it is difficult to write the components of the torque w.r.t. a frame fixed
in the body, but there are a few cases where the calculation is simple or
manageable. A first example is the case in which there is no torque acting on the
object. A second example is the spinning top, since the gravitational torque is
always perpendicular to the axis of the top. In that case [_3 is always zero. In
addition, because of the symmetry of the spinning cone, A_1= A_2. Consequently

the third of Euler's equations becomes
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This proves that in the case of the spinning top the component of the angular
velocity along the top axis is constant.



