Bead on a rotating hoop
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Let's consider the case of a bead mounted on a circular hoop. The hoop is vertical and. it spins
around a vertical axis going through its center. The angular velocity of the rotation of the hoop

is constant and indicated by w
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This system has a single degree of freedom, 6
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Therefore the Lagrangian is
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The equation of motion for the angle 6 is
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The equation cannot be solved analytically

Equilibrium points

However, one can use the equation of motion to find out what are the equilibrium
points, namely the values of 6 for which, if the bead is placed there with zero
generalized velocity, the bead will remain in place. Clearly the equilibrium points

will be the points where the generalized acceleration will be zero acceleration
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The equation above has four solutions
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Now we want to determine if a given equilibrium point is stable or unstable. An
equilibrium point is called stable if the bead returns to the equilibrium point if it is
moved away from it by an infinitesimal amount. An equilibrium point is called
unstable if the bead moves away from it if displaced by an infinitesimal amount
from the equilibrium point. In order to determine the nature of the equilibrium

point it is necessary to look at the acceleration in theta.



Point 1
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Point 2
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Point 3
Point 3 and point 4 are equilibrium points only when point 1 is unstable, i.e. when
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Consider now an angle 6 < /2 such that
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Then let's set

T-0.450D
8@ = (WZCOX%—,S\j Sl‘mﬁf -t Sc\mz%; g@

s g%>0 f>gé<0 Po{mt 3 \'s
f §Vco 550 50 spatr e

The same considerations apply to point 4.
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To summarize
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Oscillations near equilibrium

The equation of motion can be simplified if one considers small oscillation around
equilibrium. For point 1 one finds
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For point 3 one can define
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Observation

Notice that in this case 0 is a coordinate with respect to a non-inertial frame (the
rotating hoop). However, what matters is that the Lagrangian is written in an
inertial frame (as we did, considering an observer at rest with respect to the
ground and not an observer rotating together with the hoop). This is sufficient to
obtain Lagrange's equation which correctly describe the physics of the problem.



