Lagrange equations: One particle in 2D, polar

coordinates
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As a first application of Lagrange equations, let's try to describe a particle free to move in two
dimensions and subject to a conservative force determined by a potential U. In addition, let's
describe the position and velocity of the particle in polar coordiantes. The Lagrangian will

therefore be
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One can write two Lagrange's equations, one by taking derivatives with respect to

v, the other by taking derivatives with respect to @
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First equation:
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This equation reproduces Newton's second law along the radial direction.



Second equation
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One can then recognize that the time derivative is indeed applied to the angular

momentum of the particle calculated with respect to the origin of the frame of
reference Y \
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It is useful to keep in mind the equation for the gradient in polar coordinates:
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Therefore the second equation can be rewritten as
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Also the second equation corvesponds to something that is known in Newtonian
mechanics, namely that the torque applied to a particle corresponds to the rate of
change of angular momentum. In addition, we can readily see that if the potential
U does not depend on @, then the angular momentum L is conserved. This is
indeed a general result, if the Lagrangian does not depend on a given generalized
coordinate, then the associated genervalized momentum is conserved

d o9 ci=d oL

. = - = =0 —> —— = constont
L=
I3SSu A @ (S Zexo



