Liouville theorem
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We already observed that one can follow the motion of a system as the motion of a dot in
phase space that represents that system. Given an initial condition in phase space, the system
will follow a trajectory in phase space that will never intersect a trajectory starting from
another initial condition which is not in the future or in the past of the first trajectory. One
can say that the phase space is filled by infinitely many thin spaghetti, that never intersect
each other. The simplest example is of course a two dimensional phase space.
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In some cases, such as in statistical mechanics, it is interesting to follow the motion
of many copies of the system in phase space. These copies will differ because of the
initial conditions and will follow different trajectories. For example, when one
studies an ideal gas, the copies of the system are the molecules, each one of which
satisfies the same Hamiltonian but has a different initial velocity and position.
Since each molecule will have generalized coordinates and momenta that define its
position in phase space at any given time, one can study the motion of a swarm or
these points in phase space as time goes by. The cloud of points can change in
shape as the system evolves in time.

It is often useful to visualize the simple case of a two dimensional phase space in
which the phase space point and the corresponding phase space velocity are
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One can observe that if one considers the trajectories starting from a certain
closed volume in phase space, these trajectories will end up after a given time in a
different closed volume of phase space. No point that starts from inside the initial
volume will end up outside the final volume. Indeed if that could happen, it would
mean that the trajectory of a point that started from inside the volume crossed a

trajectory of a point of the initial volume boundary. This is forbidden because

trajectories cannot cross.
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Liouville theorem, that we want to prove, states that the volume of the phase
space that we consider does not change in time. In order to prove the theorem,
one needs to calculate the rate of change of a volume in terms of the velocity of
the points in the volume, and to use the div divergence theorem (Gauss' theorem).

Rate of change of a volume

One can calculate the rate of change of a volume in three dimensional space (think
about a volume of gas expanding or contracting in a balloon). The volume is
characterized by a bunch of points occupying a given position in space at a given
time. Each of these points has a velocity that can (and in general will) depend on

the position
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This is equivalent to the case of a phase space point, where the velocity also

depends on the position.
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Consequently the result of the three dimensional calculation discussed below s

applicable to the case of a phase space volume as well.

The infinitesimal volume of the gray portion in the previous figure is

RS
dV=h.75t dA

AN
<

ol /—\
Therefore the total change in volume in the time &t is
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Consequently, since also 8t is an infinitesimal
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Notice that
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One can then combine the above with the divergence theorem to find
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The relation above has the important consequence that if the divergence of the
velocity field is zero, then the volume is invariant. That is precisely the situation of

a fluid in laminar flow.

Laminar flow
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Consider the case of a fluid that moves as collection of rigid flat surfaces stacked
up along the y axis. Let's assume that the speed of the layers grows linearly with y
and the fluid moves along . It is easy to see that
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Consequently, the volume of a sphere of fluid would remain constant as the fluid
moves, even if the sphere will be distorted in another shape.
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Since we need to apply the theorem to phase space rather than to ordinary three
dimensional space, we need to consider the generalization of the divergence to n
dimensions, which is straightforward
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Liouville's theorem

The proof of Liouville's theorem is now straightforward. For a two dimensional
phase space, the velocity of a phase space point is divergenceless
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Consequently
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It simple to generalize the result to a phase space of dimension 2n since
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Liouville's theorem remains valid for Hamiltonian that explicitly depend on time
and for systems that cannot be described in terms of natural coordinates (so that
the Hamiltonian does not coincide with the energy). Notice that there is no analog
of Liouville's theorem in the space of generalized positions and velocities, which is
the natural space to use in Lagrangian mechanics.

Finally Liouville' theorem has important consequences in the study of chaotic
systems, where phase space trajectories that are close at one point in time diverge
rapidly from one another.



