Simple harmonic motion
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The equation of motion of an object of mass m that is subject to Hooke's force is
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The equation above can be rewritten as
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The goal is now to find general solution for this differential equation.

A first general solution (involving as expected two constants to be fixed by

imposing appropriate initial conditions) is
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Of course x should be real, while the exponentials are complex, so that the
constants C_1 and C_2 should be chosen in such a way that x turns out to be real.
Of course one can rewrite the exponentials in terms of sign and cosines

+ wt L
e = Cog wt + U $uhn (A)é

DC(”&): Cl((OSLL)f—I’L‘St\H Wé)'\-CZ_(COSwt—l\_s(‘nwt)

= ((l—(—cz) cos wt + 1‘<C,~C2> sin wot
- L I T

=B, = B

2

SINUsSol bAL

X (ﬁ) = B Cos wt -+ Ez S n (/Ot SCLUTION

The constants B_1 and B_2 must be real.
Observe that it s d
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Similarly
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The period of the functions above is
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The general solution, with non zero initial position and velocity can be rewritten in

terms of an amplitude constant and a phase
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Consequently, one can write x also as
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The complex number in square brackets rotates on a circle of radius A. The

projection of this point on the x axis represents the position of the oscillating

object. 3
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Example (from Taylor, chapter 5, example 5.2)

((wt —S\J

A bottle is floating in a container of water. The bottle is pushed down to that the
bottom of the bottle reaches a depth d in the water. The bottle is then released.
What is the period of the bottle's oscillation? Neglect any sort of friction.
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Assume the bottle to be cylindrical and the cross sectional area to be equal to A.
When the bottle is at equilibrium and it is not oscillating, it reaches a depth that
can be determined by observing that the weight of the bottle must be balanced by
the buoyant force acting on the bottle.
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Now let's assumed that when the bottle is pushed down and then released, the
bottom of the bottle reaches a depth d equal to
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The equation of motion is therefore
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The total mechanical energy of the oscillator can be easily determined starting

from
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