Harmonic oscillator
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A fundamental problem in physics is the study of the harmonic oscillator. Physically, the
oscillator is important because, sufficiently close to an equilibrium point, every physical system
behaves as a harmonic oscillator. Mathematically, harmonic oscillators have exact simple and

analytical solutions not only in Newtonian mechanics but also in quantum mechanics.

The classic example of a harmonic oscillator is a mass attached to the end of a spring and free

to move on a surface without friction
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The force experienced by the mass is given by Hooke's law

Fa =k | Kesprima o pkye I

N
constant N1\

This is a restoring force (if k is positive, as in the case of a spring) the object is
always pushed back to the position where the spring is not stretched. The potential

energy associated to Hooke's force is
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An object with total energy E subject only to Hooke's force will oscillate between
the points x= A and x= -A located symmetrically with respect to x = O.



Notice that any potential depending on one parameter only will behave as a
harmonic oscillator near an equilibrium point. In fact, if one sets thing up in such a
way that the equilibrium point coincides with the coordinate x = O, and one
subsequently expands the potential around that point one finds
l
dv d°o
U()c :U(O> T [T x uy x?—l-_,
-+ |
d x 2 dx?

X = o

X =o

The first term is a constant (does not depend on x) therefore it is irrelevant (the
potential energy is defined only up to an additive constant, only differences in
potential energy have a physical meaning).

The second term s zero, because an equilibrium point, stable or unstable,
corvesponds to a minimum (stable equilibrium) or a maximum (unstable
equilibrium) of the potential. In both cases, the first derivative of the potential at
the equilibrium point must be zero.

Therefore
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Example cube balanced on a cylinder

Let' consider again the case of a cube balanced on a cylinder and see how one can

find out if the equilibrium is stable or unstable by looking directly at the potential
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