Quadvratic drag: Horizontal motion
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Let's consider the motion of an object moving along the positive x direction and subject to a
quadratic drag force.

This differential equation can be solved with the method of the separation of
variables: All of the dependence on v should be confined to the [.h.s of the equation,
while the dependence on t should be confined to the opposite side
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One can now solve for v
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It is convenient to introduce the quantity tau that has the dimension of time
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The equation for v can then be rewritten as

t

The next step consists in finding the position as a function of time
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Notice that in this case x grows indefinitely, even if only very slowly

(logarithmically). In real life, when v becomes very small the linear drag becomes
more important than the quadratic drag. We already showed that an object

moving on a line and subject to a linear drag force will stop.

Why is linear drag more efficient at stopping and object than the quadratic drag?
Because when v becomes small the quadratic drag becomes small much faster than

the linear drag.



