PHYS 3100-Final exam

Problem 1

Consider a mass m constrained to move in a vertical line under the influence of gravity (near the surface of the Earth).
a) Using the coordinate y measured vertically down from a convenient origin O , write down the Lagrangian \mathcal{L} and the generalized momentum $p=\partial \mathcal{L} / \partial \dot{y} .(5$ points $)$
b) Find the Hamiltonian \mathcal{H} as a function of y and p. (10 points)
c) Write down Hamilton's equations of motion. (10 points)

Problem 2

A simple pendulum (mass m length l) whose point of support P is attached to the edge of a wheel (center O, radius R) that is forced to rotate counterclockwise at a fixed angular velocity ω. At the time $t=0$, the point P is level with O on the right.
a) Write down the Lagrangian as a function of the angle between the a vertical line going through P and the pendulum. Indicate this angle with ϕ. (10 points)
b) Find the equation of motion for the angle ϕ. (10 points)
c) Check that your answer to part b) makes sense in the special case $\omega=0$. Explain why your result makes sense. (5 points)

Hint: Be careful writing the kinetic energy T. A safe way to get to the velocity correctly is to write down the position of the bob at the time t, and then differentiate.

Problem 3

Consider the modified Atwood machine shown in the figure. The two weights on the left have equal masses m and are connected by a massless spring of force constant k. The weight on the right has a mass $M=2 m$, and the pulley is massless and frictionless. The coordinate x is the extension of the spring from its equilibrium length; that is, the length of the spring is $l_{e}+x$ where l_{e} is the equilibrium length (with all of the weights in position and M held stationary).
a) Show that the total potential energy (spring plus gravitational) is just $U=k x^{2} / 2$ (plus a constant that we can take to be zero). (10 points)
b) Find the two momenta conjugate to x and y. Solve for \dot{x} and \dot{y}, and write down the Hamiltonian. Show that coordinate y is ignorable. (10 points)
c) Write down the four Hamilton equations and solve them for the following initial conditions: You hold the mass M fixed with the whole system in equilibrium and $y=y_{0}$. Still holding M fixed, you pull the lower mass m down a distance x_{0}, and at $t=0$ you let go of both masses. Describe the motion. In particular, find the frequency with which x oscillates. (5 points)

Hints: Remember that the equilibrium length l_{e} is not the same as the natural length l. To deal with the initial conditions, write down the initial values of x, y and their momenta. You can solve the x equations by combining them into a second order equation for x. Once you know $x(t)$, you can quickly write down the other three variables.

Problem 4

A rigid body consists of three masses fastened as follows: m at $(a, 0,0), 2 m$ at $(0, a, a)$ and $3 m$ at $(0, a,-a)$.
a Find the inertia tensor I. (10 points)
b Find the principal moments. (5 points)
b Find a set of orthogonal principal axes. (10 points)

