Charged particle in a magnetic field
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The goal of this section is to find a function L such that the corresponding Lagrange's equations
reproduce Lorentz force
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In order to achieve this goal, it is convenient to rewrite the fields in terms of the
potentials (scalar and vector)

FL_VidieA B- VxA
ot

One can now prove that the Lagrangian is
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Indeed one can now check, component by component, that Lagrange's equations
reproduce the components of Lorentz equation. Consider for example the x

component
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The equation above is indeed the x component of Lorentz equation.

It is interesting to evaluate the generalized momentum coming from this

Lagrangian
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This is useful in quantum mechanics because the quantization rules require to
replace the momentum with the operator
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