PHYS 3100 - First exam

Problem 1

Consider the two dimensional force

$$
\mathbf{F}=y \hat{\mathbf{i}}+2 x \hat{\mathbf{j}},
$$

Calculate the work done by this force on a each one of the three paths going from the origin of the frame of reference to the point P of coordinates $(1,1)$ and shown in the figure below.

a)

$$
W_{a}=\int_{a} \mathbf{F} \cdot d \mathbf{r}, \quad(10 \text { points })
$$

b)

$$
W_{b}=\int_{b} \mathbf{F} \cdot d \mathbf{r}, \quad \text { (10 points) }
$$

c)

$$
W_{c}=\int_{c} \mathbf{F} \cdot d \mathbf{r}, \quad \text { (20 points) }
$$

Problem 2

Consider a puck moving with constant velocity v along the x axis on a frictionless surface. At the time $t=0$ the puck is located at the origin of the frame of reference. Imagine that the surface below the puck is a turntable that rotates at constant angular velocity ω with respect to the direction of motion of the puck. The center of the rotation is the position of the puck at the time $t=0$. When seen from above, the turntable rotates clockwise.

a) Write an equation for the coordinate x^{\prime} and y^{\prime} of the puck in the rotating frame. These coordinates are functions of v, ω and t. (10 points)
b) Plot the trajectory of the puck in the rotating frame. In the plot, set $v=1 \mathrm{~m} / \mathrm{s}, \omega=11 / \mathrm{s}$, and plot the trajectory for $t \in[-6 \pi, 6 \pi]$. (10 points)

Problem 3

The velocity of a rocket accelerating vertically from rest in a gravitational field g is given by

$$
v(t)=-g t+v_{\mathrm{ex}} \log \left(\frac{m_{0}}{m_{0}-k t}\right) .
$$

The initial mass of the rocket loaded with fuel is indicated by $m_{0}, v_{\text {ex }}$ indicates the velocity of the exhaust with respect to the rocket, and k is a positive constant. Integrate the equation above to find an equation for the position y as a function of time. (10 points)

Problem 4

Consider an object that is coasting horizontally (positive x direction) subject to a drag force

$$
f=-b v-c v^{2} .
$$

Write down Newton's second law for this object and solve for v by separating variables. (Indicate the initial velocity with v_{0}, check that at $t=0$ your formula gives $v=v_{0}$.) What happens when $t \rightarrow \infty$? (10 points)

Problem 5

The potential energy of a particular mass m depends only on the distance from the center of the frame of reference and it is given by

$$
U(r)=U_{0}\left(\frac{r}{R}+\lambda^{2} \frac{R}{r}\right)
$$

U_{0}, R and λ are all positive quantities.
a) Find the value of r at which the mass is in equilibrium, i.e. the value of r for which the force acting on the particle is 0 . Let's indicate that particular value of r with r_{0}. Is the equilibrium point stable or unstable? (10 points)
b) Write $r=r_{0}+x$. Show that for small x the potential is equal to

$$
U(r)=\frac{1}{2} k x^{2}+\text { const. }
$$

where k is a constant quantity. (10 points)
c) Calculate the angular frequency ω that characterizes the small oscillations around the equilibrium point. (10 points)

