NEW YORK CITY COLLEGE OF TECHNOLOGY

The City University of New York

DEPARTMENT:
 COURSE:
 TITLE:
 DESCRIPTION:

Mathematics

MAT 1275

College Algebra and Trigonometry

An intermediate and advanced algebra course. Topics include quadratic equations, systems of linear equations, exponential and logarithmic functions; topics from trigonometry, including identities, equations and solutions of triangles.

1) Intermediate Algebra 2e, by Lynn Marecek and Andrea Honeycutt Mathis, et al. OpenStax: https://openstax.org/details/books/intermediate-algebra-2e
2) Algebra and Trigonometry by Jay Abramson, et al. OpenStax:
https://openstax.org/details/books/algebra-andtrigonometry

CREDITS:

PREREQUISITES:

4

MAT 1175 OR high school mathematics GPA of at least 70 and a successful completion of at a high school math course of least
Algebra 1 OR NYS Regents Algebra 1 score of at least 75 OR NYS Regents Geometry score of at least 70.

Updated Spring 2021 by H. Carley, B. Kan, A. Masuda, and T. Tradler
A. Testing/Assessment Guidelines:

The following exams should be scheduled:

1. A one-hour exam at the end of the First Quarter.
2. A one session exam at the end of the Second Quarter.
3. A one-hour exam at the end of the Third Quarter.
4. A one session Final Examination.
B. A scientific calculator is required.

COURSE INTENDED LEARNING OUTCOMES

Course Learning Outcomes	General education Learning Outcomes	Required Core: Mathematical and Quantitative Reasoning
Be able to simplify and manipulate linear, quadratic, radical, rational, exponential, logarithmic, and trigonometric expressions.	FS: Transfer; Be able to refer to prior knowledge or skill and can apply such to new situations.	Be able to use algebraic, numerical, graphical, or statistical methods to draw accurate conclusions and solve mathematical problems.
Be able to solve equations involving linear, quadratic, radical, rational, exponential, logarithmic, or trigonometric expressions as well as systems of linear/quadratic equations.	Foundation and skills: Curiosity: Explore a topic in depth yielding insight indicating interest.; QL: Interpretation, presentation: Be able to explain information presented in mathematical forms and to convert relevant information into various mathematical forms.	Interpret and draw appropriate inferences from quantitative representations, such as formulas, graphs, or tables.
Be able to graphically solve equations involving linear and quadratic expressions (including systems of such). Be able to use the unit circle to solve trigonometric equations. Understand the relationships between solutions to equations and their graphs.	FS: Transfer; Be able to refer to prior knowledge or skill and can apply such to new situations. QL: Calculation, Application/Analysis: Be able to carry out accurate calculations in order to solve a problem and to make judgements and draw appropriate conclusions based on the quantitative analysis of data, while recognizing the limits of this analysis.	Be able to use algebraic, numerical, graphical, or statistical methods to draw accurate conclusions and solve mathematical problems.
Be able to frame word problems in terms of mathematical equations and/or graphs. Be able to interpret the mathematical solutions in terms of the original language of the problem.	FS: Independence, reflection: Pursue knowledge beyond classroom requirements and/or show interest in independent educational experiences and reviews prior learning leading to clarification and broader perspectives.	Be able to represent quantitative problems expressed in natural language in a suitable mathe matical format and apply mathematical methods to problems in other fields of study.
Be able to write solutions of mathematical problems involving linear, quadratic, radical, rational, or trigonometric expressions with full detailed explanations.	QL: Communication: Be able to express quantitative evidence in support of the argument or purpose of the work.	Be able to effectively communicate quantitative analysis or solutions to mathematical problems in written or oral form.
Be able to recognize errors in proposed solutions and explain in written or oral form the nature of such an error as well as be able to correct it. Be able to estimate solutions of equations using graphs.	FS: Initiative: Complete required work and identifies and pursues additional expansion or knowledge or skills. QL: Assumption. Be able to make and evaluate important assumptions in estimation and modeling.	Be able to evaluate solutions to problems for reasonableness using a variety of means, including informed estimation.

MAT 1275-College Algebra and Trigonometry

Course Outline

Textbooks: 1) Intermediate Algebra 2e by Lynn Marecek and Andrea Honeycutt Mathis, et al. OpenStax (Classes 1-21)
2) Algebra and Trigonometry by Jay Abramson, et al. OpenStax (Classes 22-29)

WeBWorK: WeBWorK for MAT1275 uses the OpenLab Q\&A site: Students will need an OpenLab account in order to post new questions.

Class	Lesson	Section	Homework (This column will not be used)	WeBWorK Set
$\frac{1}{8 / 26}$	Solve Systems of Equations with Three Vari- ables Solve Systems of Equations Using Determinants (optional)	4.4: all examples 4.6: exclude Ex. 4.52	$\begin{aligned} & \text { 4.4: } 163-175 \text { odd, } 183,187,189-193 \text { odd } \\ & \begin{array}{l} \text { 4.6: } \\ \text { odd, } 233-235,267 \end{array} \end{aligned}$	3×3-Systems Introduce Yourself Open Lab
$\begin{array}{\|l\|} \hline 2 \\ 8 / 31 \end{array}$	Polynomial Equations	$\frac{6.5:}{6.55} \text { exclude Ex. 6.50, 6.51, }$	6.5: 277-309 odd, 321-331 odd	ZeroProductProperty One minute reflection pape
$\begin{array}{\|l\|} \hline 3 \\ 9 / 2 \end{array}$	Properties of Exponents and Scientific Notation Add and Subtract Rational Expressions	5.2: exclude Scientific Notation 7.2: exclude Ex. 7.22, 7.23	5.2: 89, 103, 105, 111, 115, 125 7.2: 77-85 odd, 91, 99-103 odd, 107, 111, 119, $123,125,133,135$	IntegerExponents Quiz webwork ReducingRationalExpressions AddRationalExpressions AddRationalExpressions2
$\begin{array}{\|l\|} \hline 4 \\ 9 / 14 \end{array}$	Simplify Complex Rational Expressions	7.3: all examples	7.3: 151-185 odd, 188, 191, 193	ComplexFractions-Method1 ComplexFractions-Method2
$\begin{array}{\|l\|} \hline 5 \\ 9 / 21 \end{array}$	Solve Rational Equations Applications with Rational Equations	7.4: exclude Ex. 7.40 7.5 : Ex. 7.45, 7.46	7.4: 199-215 odd, 240, 246 7.5: 275-283 odd	FractionalEquations Discussion OL
$\begin{array}{\|l\|} \hline 6 \\ 9 / 23 \\ \hline \end{array}$	Simplify Expressions with Roots Simplify Rational Exponents	$\begin{aligned} & \text { 8.1: Ex. 8.1, 8.2, 8.7a, 8.8, } \\ & \text { 8.10, } 8.12 \\ & \text { 8.3: Ex. 8.26, 8.27a, 8.28, } \\ & 8.29-8.33 \text { all } \end{aligned}$	8.1: 1-17 odd, 31, 34, 39, 47 8.3: 119, 123, 127-135 odd, 141, 145-153 odd, 159a	HigherRoots HigherRoots-Algebraic RationalExponents 1 minute reflection paper
$\begin{array}{\|l\|} \hline 7 \\ 9 / 28 \end{array}$	Simplify Radical Expressions Add, Subtract, and Multiply Radical Expressions	$\begin{aligned} & \text { 8.2: Ex. } 8.13,8.14 \mathrm{a}, 8.15 \mathrm{a}, \\ & 8.16 \mathrm{a}, 8.17 \mathrm{a}, 8.20 \mathrm{a}, 8.21 \mathrm{a}, \\ & \text { 8.22a, } 8.23 \mathrm{a}, 8.24 \mathrm{a}, 8.25 \mathrm{a} \\ & \text { 8.4: Ex. } 8.36 \mathrm{a}, 8.37 \mathrm{a}, 8.38 \mathrm{a}, \\ & \text { 8.39a } \end{aligned}$	8.2: 55-59 odd, 67a, 73a, 75a, 77a, 95, 103a 8.4: 165a, 167a, 169a, 171a, 173a, 174a, 175a, 176a, 177a, 181, 182	SimplifyingRadicals Quiz AddSubtractRadicals
$\begin{array}{\|l\|} \hline 8 \\ 9 / 30 \end{array}$	Multiply Radical Expressions	$\begin{aligned} & \text { 8.4: Ex. 8.40a, 8.41a, 8.42a, } \\ & \text { 8.43a, 8.44, 8.45a, } 8.46 \end{aligned}$	8.4: 183a, 184a, 185a, 186a, 187a, 189a, 191a, 193a, 195, 197a, 199a, 205-213 odd, and Simplify: $(\mathrm{a})(8+\sqrt{a})(8-\sqrt{a})$ (b) $(x+\sqrt{2})(x+\sqrt{6})$ (c) $(\sqrt{5}-\sqrt{y})^{2}$	MultiplyRadicals Review webwork
9 $10 / 5$ 10	Exam 1 Divide Radical Expressions	$\begin{aligned} & \text { 8.5: Ex. 8.47a, 8.48a, 8.49, } \\ & 8.50,8.53,8.54,8.55 \end{aligned}$	8.5: 245a, 247a, 251a, 255, 259, 261, 271-279 odd	RationalizeDenominators
$\begin{array}{\|l\|} \hline 10 \\ 10 / 7 \end{array}$	Solve Radical Equations	$\begin{aligned} & \text { 8.6: } \\ & \text { 8.61, } \\ & 8.62 \end{aligned}$	8.6: 287, 289, 293-299 odd, 301-304 all, 317, and Solve for $x: \sqrt{x^{2}+5 x-7}=x+4$.	RadicalEquations

Class	Lesson	Section	Homework	WeBWorK Set
$\begin{aligned} & \hline 11 \\ & 10 / 12 \end{aligned}$	Use the Complex Number System	8.8: Ex. 8.76-8.89 all	8.8: 409, 441, 443, 415-423 odd, 429-437 odd, 453-455 all, 457-467 odd, 469-473 all	ComplexNumbers 1 minute reflection paper
12 $10 / 14$	Solve Quadratic Equations Using the Square Root Property Solve Quadratic Equations by Completing the Square Solve Quadratic Equations Using the Quadratic Formula	9.1: all examples 9.2: all examples 9.3: derive the quadratic formula, exclude Ex. 9.26	9.1: 1-11 odd, 25-37 odd 9.2: 71, 75-79 odd, 99-105 odd 9.3: 115-131 odd, 145-149 odd	SquareRootProperty Discussion QuadraticFormula
$13_{10 /}$	9Solve Applications of Quadratic Equations	9.5: exclude Ex. 9.40, 9.41	9.5: 195-217 odd	
$\begin{aligned} & 14 \\ & 10 / 21 \end{aligned}$	Graph Quadratic Functions Using Properties Graph Quadratic Functions Using Transformations Parabolas (optional)	9.6: all examples 9.7: exclude Ex. 9.63 11.2: Ex. 11.15	9.6: 229-233 odd, 237-243 odd, 253-261 odd, 277-283 odd 9.7: 293-339 odd, 349, 351 11.2: 65,67	ShiftingParabolas ParabolaLab ParabolaVertices-CtS ParabolaVertices- VertexFormula
$\begin{aligned} & 15 \\ & 10 / 26 \end{aligned}$	Distance and Midpoint Formulas; Circles Perpendicular Bisectors	11.1: all examples	11.1: 1-5 odd, 13-37 odd, 41-47 odd Supplemental problems on perpendicular bisectors	DistanceFormula CircleLab Circles
$\begin{aligned} & 16 \\ & 10 / 28 \end{aligned}$	Solve Systems of Nonlinear Equations	11.5: all examples	11.5: 189-195 odd, 201, 203, 209, 213223 odd, 229, 231, 235, 237, and solve $\left\{\begin{array}{l} x^{2}-y^{2}=-4 \\ y=2 \sqrt{x} \end{array}\right.$	NonLinearSystems Discussion
1711/2 Exam 2 (Midterm)				
$\begin{aligned} & 18 \\ & 11 / 4 \end{aligned}$	Evaluate and Graph Exponential Functions	$\frac{10.2:}{10.13} \text { exclude Ex. } 10.10-$	10.2: 95-101 all, 105, 107, 115-121 odd	ExponentialFunctions Quiz
$\begin{gathered} 19 \\ 11 / 9 \end{gathered}$	Evaluate and Graph Logarithmic Functions	10.3: exclude Ex. 10.22, $10.23,10.26,10.27$	10.3: 129-171 odd	LogarithmicFunctions 1 minute reflection paper
2011/1	1 Use the Properties of Logarithms	10.4: all examples	10.4: 219-227 odd, 251-277 odd, 279, 281	LogarithmicProperties
$\begin{array}{\|l\|} \hline 21 \\ 11 / 16 \end{array}$	Solve Exponential and Logarithmic Equations	10.5: all examples	10.5: 295-299 odd, 309-315 odd, 323, 347, 353	ExponentialEquations ExponentialEquations-Calc CompoundInterest
22 $11 / 18$	Angles Right Triangle Trigonometry	7.1: Ex. 1-8 all 7.2: all examples	7.1: 7-21 odd, 27-39 odd, 51-57 odd 7.2: 1, 3, 7, 10-16 all, 17-41 all, 43, 45, 47-55 odd	AngleMeasure-Radians SolvingRightTriangles SpecialTriangles TrigonometryRatios
$\begin{aligned} & 23 \\ & 11 / 23 \end{aligned}$	Unit Circle The Other Trigonometric Functions	7.3: all examples 7.4: exclude Ex. 4	7.3: 1-57 odd, 61-79 odd, 83, 87, 101, 103 7.4: 1-65 odd, 70, 71, 75	UnitCircle CoordinatePlaneTrig

Class	Lesson	Section	Homework	WeBWorK Set
$\begin{aligned} & \hline 24 \\ & 11 / 30 \end{aligned}$	Graphs of the Sine and Cosine Functions Graphs of the Other Trigonometric Functions (optional)	$\begin{aligned} & \text { 8.1: Ex. } 1,2,8 \\ & \text { 8.2: Ex. } 1,3 \end{aligned}$	8.1: 1, 5, 7-13 odd, 26, 27, 28, 30, 38, 8.2: 22,24	GraphingSineCosine Desmos activity
$\begin{array}{\|c\|} \hline 25 \\ 12 / 2 \end{array}$	Inverse Trigonometric Functions	8.3: Ex. 1-4	8.3: 3, 9-21 odd, $22,23,53,55,57$	SolvingRightTrianglesInverseTrig
$\begin{array}{\|l\|} \hline 26 \\ 12 / 7 \end{array}$	Exam 3 Solving Trigonometric Equations with Identities	9.1: all examples	9.1: $4,5,7,13,29,31,32,33,40,42$	
2712	Solving Trigonometric Equations	9.5: Ex. 1-5, 7-13, 17	9.5: 5-19 odd, 41-49 odd, 73-77 odd	TrigEquations
2812	1 Non-right Triangles: Law of Sines	10.1: all examples	10.1: 3-51 odd, 59-77 odd	LawOfSines
2912/	6 Non-right Triangles: Law of Cosines	10.2: Ex. 1-4	10.2: 1, 7-25 odd, 33-53 odd, 63-73 odd	LawOfCosines
$3012 / 2$ Final Exam				

