EXPERIMENT # 5: Universal Capability of NAND and NOR Gates

Name: _______Date: _____

Equipment/Parts Needed:

7432 OR gate

Digital Trainer (Logic Probe) Breadboard 7400 NAND gate 7402 NOR gate 7404 Inverter 7408 AND gate

Objective:

- The universality of the NAND and NOR gates means that they can be used as an inverter and the combinations of NAND/NOR gates can be used to implement the AND, OR, and all other logic operations.
- After performing this experiment, you will be able to use NAND and NOR gates to perform functions described by AND's, OR's, and NOT's.

Discussion:

• The NAND gate is a universal gate because it can be used to produce the NOT operation, the AND operation, the OR operation, and the NOR operation. An inverter can be made from a NAND gate by connecting all of the inputs together and creating, a single input as shown below.

1.

Figure 5-1 An inverter operation generated by the use of NAND gate

2.

Figure 5-2 An AND operation generated by the use of two NAND gates

3.

Figure 5-3 An OR operation generated by the use of three NAND gates

- A **Truth Table** defines how a combination of gates will react to all possible input combinations.
- A Logic Probe is a piece of test equipment which displays the logic level at a point in the circuit. 0 to 0.8V = Logic 0 and lights the **L** indicator. 2.0V to 5.0V = Logic 1 and lights the **H** indicator. Invalid logic voltage levels light neither indicator.

Part 1:

1) Find the Boolean equation for the logic circuit shown in Figure 5-4.

Figure 5-4 Logic Circuit for part 1.

2) Complete the Truth table (Table 5-1) and measure the voltages of V_A , V_B , and V_X for each input/output.

Voltages measured		Truth Table			Output
$V_A(V)$	$V_{B}(V)$	A	В	X	$V_X(V)$
		0	0		
		0	1		
		1	0		
		1	1		

Table 5-1 Truth table and volts measured for input/output for Figure 5-4

- 3) Reconstruct the circuit above using only NAND gates. Include Boolean algebra, truth tables, and logic diagrams for the circuit reconstructed with only NAND gates.
 - 3-1) Boolean algebra expression

3-2) Draw the reconstructed circuit and logic diagram here (only NAND gates)

3-3) Built the truth table for the reconstructed circuit and measured the voltage for each input/output

Voltages measured		Truth Table			Output
$V_A(V)$	$V_{B}(V)$	A	В	X	$V_X(V)$
		0	0		
		0	1		
		1	0		
		1	1		

Table 5-2 Truth table and volts measured for input/output for the reconstructed circuit

Instructor's Signature:	. Date:
instructor's Signature:	. Date:

Part 2:

1) Find the Boolean equation for the logic circuit shown in Figure 5-5.

Figure 5-5 Logic Circuit for part 2.

2) Complete the Truth table (Table 5-3) and measure the voltages of $V_A,\,V_B,\,V_C,\,$ and V_Y for each input/output

Volta	ages meas	sured	Truth Table			Output	
$V_A(V)$	$V_B(V)$	$V_{C}(V)$	A	В	С	Y	$V_{Y}(V)$
			0	0	0		
			0	0	1		
			0	1	0		
			0	1	1		
			1	0	0		
			1	0	1		
			1	1	0		
			1	1	1		

Table 5-3 Truth table and volts measured for input/output for Figure 5-5.

- 3) Then reconstruct the circuit above using only NOR gates. Include Boolean algebra, truth tables, and logic diagrams for the circuit reconstructed with only NOR gates.
 - 3-1) Boolean algebra expression

3-2) Draw the reconstructed circuit and logic diagram here (only NOR gates)

3-3) Built the truth table for the reconstructed circuit and measured the voltage for each input/output

Voltages measured			Truth Table			Output	
$V_A(V)$	$V_B(V)$	$V_{C}(V)$	A	В	C	Y	$V_{Y}(V)$
			0	0	0		
			0	0	1		
			0	1	0		
			0	1	1		
			1	0	0		
			1	0	1		
			1	1	0		
			1	1	1		

Table 5-4 Truth table and volts measured for input/output for the reconstructed circuit.

Instructor's Signature: , Date:

Questions/Report:

- 1. Why are NAND gates and NOR gates sometimes referred to as universal gates?
- 2. Why would a designer want to form an AND gate from two NAND gates?
- 3. Using only four NAND gates, draw the logic circuit for NOR gate.
- 4. How many inverters could be formed using a 7400 NAND IC?