EMT1250 LABORATORY EXPERIMENT

EXPERIMENT # 1: Schematic Diagrams, Electronic Test Equipment (Logic Probe and Oscilloscope)

Name:	Date:	

Equipment/Parts Needed:

5V DC Power Supply Logic Probe (from the Digital Trainer) Oscilloscope Function Generator EMT 1250L Parts Kit

Objective:

- To become familiar with constructing a circuit from a schematic diagram.
- To use the Oscilloscope to measure the parameters of Periodic waveforms..

Discussion:

- The DIP Toggle switch will be used to connect +5V and GND to a LED and Resistor network.
- The Function Generator will be set to various settings and then measured on the Oscilloscope.

Part 1: Schematic Diagram

- 1. Construct the circuit shown below and verify that each LED is controlled by each of the Toggle switches.
- 2. The LED Cathode is the lead closest to the flat edge of the LED package.
- 3. Use the Logic Probe to debug the circuit and measure the voltages as shown below.

3.1) When switch is connected to ground		3.2) When switch is connected to Vcc	
V _{MG}		$V_{ m MG}$	
$ m V_{NG}$		$V_{ m NG}$	
Vog		V _{OG}	
V _{PG}		V_{PG}	

EMT1250 LABORATORY EXPERIMENT

Figure 1-1 Circuit with the switch connected +5V or Ground

Instructor's Signature:_______, Date: ______

EMT1250 LABORATORY EXPERIMENT

Part 2: Periodic Waveform Parameters

Connect the OUTPUT of the Function Generator to the Oscilloscope. Set the Function Generator as shown and make measurements with the Oscilloscope using the **T1 T2** and **V1 V2** cursors.

1. Frequency = 1 kHz, Amplitude = 2VPP, Offset = 2V, Duty Cycle = 50%

Oscilloscope Measurements

V High (V)	V Low (V)	t _{hi} secs	Period (secs)	Frequency (Hz)

2. Frequency = 10 kHz, Amplitude = 2.5VPP, Offset = 2.5V, Duty Cycle = 20%

Oscilloscope Measurements

V High (V)	V Low (V)	t _{hi} secs	Period (secs)	Frequency (Hz)

3. Frequency = 20 kHz, Amplitude = 2VPP, Offset = 2V, Duty Cycle = 80%

Oscilloscope Measurements

V High (V)	V Low (V)	t _{hi} secs	Period (secs)	Frequency (Hz)

Instructor's Signature:	Date:

Questions/Report:

- 1. Compare using a Logic probe VS an Oscilloscope in debugging a circuit. State the advantages of each.
- 2. Calculate the Duty Cycle for the 3 Function Generator settings in Part 2 of the experiment. Use the Oscilloscope readings to calculate Duty Cycle. Do the calculated values agree with the Function Generator settings?