CHAPTER 16

RUBBER SHEETS, HoLLOW
DOUGHNUTS, AND CRAZY

BOTTLES

A mathematician named Klein
Thought the Mébius band was divine.
Said he: “If you glue

The edges of two, o
You'll get a weird bottle like mine.

—Anonymous

By the middle of the nineteenth century mathlematicians had almuch
better understanding of how Euler’s formula applied 'Io golyhei;dra. b;exgr:
i is ti her it applied to other o .
this time that they began to ask whet !
é’t’l}rzﬁf the figure was not a polyhedron made of flat faces, but 11?s;_teadlwa1i
a curved surface like a sphere or a torus? If so, what must the partitions loo

like? Recall that in 1794 Legendre used a partition of a spherf1 by g:(;desll;
polygons to prove Euler’s formula, and Cayley shOWPfd that when we app
Euler’s formula to graphs, the edges need not be ?t.ralght. .
These discussions illustrate the ongoing transition from fl geo?f:en e
a topological way of thinking about shapes. .The pop'ullar pfless 01 e o
the term “rubber-sheet geometry” to describe the field oh l'Fopologygnded
public that is likely to be unfamiliar with the term. Alth_ougl.ﬁlter_a -m et
mathematicians take exception to this extreme oversimpli ca;wn, i e
reasonable way to describe the }cliiffei)rence b;etwe;:n Lopglgoi%y ;:/I;ea sgue:gln eni;
it is crucial that the objects of study be . :
il; agrf;fgse ;rgdlfengths, proofs of congruencies of figures, and co_mpt:]tlactsuorn:
of areas and volumes all rely on precise ar;ld unlm‘gwlrllﬁ bg:fcr{?s;n;ef; e 01;
w earlier, in some cases the rigid,
geilie::iec ;agures are not needed, and worse, they ofte_n obscufr; thri u:];ii;—
lying mathematics. In Euler’s investigation of the bridges of Konig ’
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he discovered that it was the general arrangement of features that was
important, not their exact locations. This observation led to the creation
of graph theory, one of the earliest incarnations of topology. Later we saw
hints that the alternating sum v — F + F depended only on the general
shape—the topology—of an object, and not on the number of faces or
their configuration. We observed that for any sphere-shaped polyhedron,
V—E+F =2, for a polyhedron with g “tunnels,” V—E+F =2 —2g,
and for any connected planar graph, V—E +F =1.

So it is not difficult to imagine that Euler’s formula might apply to
shapes other than polyhedra. Begin with a rubber polyhedron that satisfies
V' — E+F =2. Can we alter this shape so that V — E + F £ 27 Not easily.
If we were to inflate it like a balloon so that all the faces and edges became
curved, the alternating sum would not change. If we were to squeeze it,
twist it, or pull it, the relationships among the numbers of vertices, edges,
and faces would remain the same. Only by using a knife to cut a gash in
the side of the balloon would the alternating sum change (it would create
at least one new edge). In the next chapter we will discuss in more detail
what it means for two shapes to be topologically “the same,” and we will
investigate how Euler’s formula applies to various topological shapes.

The mathematical term “topology” dates back to 1847 (it had a botanical
meaning earlier than that). It first appeared in German in the title of
Listing’s book Vorstudien zur Topologie," although he had already been
using the term in correspondence for ten years. The first appearance in
English was in Peter Guthrie Tait’s (1831-1901) eulogy of Listing in 1883.
He wrote, “The term Topology was introduced by Listing to distinguish
what may be called qualitative geometry from the ordinary geometry in
which quantitative relations chiefly are treated.”?

The term “topology” did not catch on immediately. Influential mathe-
maticians such as Henri Poincaré and Oswald Veblen continued to use the
French term analysis situs. The great early-twentieth-century topologist
Solomon Lefschetz (1884-1972) was not so enamored with this term. He
referred to analysis situs as “a beautiful but awkward term.”3

Lefschetz’s route to greatness was a curious one. He was born to Turkish
parents in Russia in 1884, was raised and schooled in France, emigrated
to America, and took a job as an engineer in Philadelphia. At the age of
twenty-six, not long after losing his hands and forearms in a work-related
accident, he decided to pursue a career in mathematics. He completed his
PhD at Clark University in a single year, and taught briefly in Nebraska
before taking a position at the University of Kansas at Lawrence. Then,
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Figure 16.1. Ants on the surface of a sphere and a torus.

at forty, after more than a decade of important work,. he. was hlre;dI
by Princeton University. He received numerous honmts in his long an
distinguished career, including the National Medal of Science. ,

According to Albert Tucker (1905-1995), one of Lefschetz Ei, studt_znts,
it was Lefschetz who popularized the use of the term ”topolqu. He titled
his influential 1930 book for the American Mathematical Society Topology.

According to Tucker:

Lefschetz wanted a distinctive title and also, as he would say, a
snappy title, so he decided to borrow the word Topologie fro.m
German. This was odd for Lefschetz since he was French trfnned and
analysis situs was Poincaré’s term; but once l?e degded 01‘1.11', he
conducted a campaign to get everyone to use it. His campaign
succeeded quickly, mainly I think because of the derivative Words:
topologist, topologize, topological. That doesn't go so well with

analysis situs!*

We begin our investigation of topology by looking at smffm:es. Examples of
surfaces are a 2-dimensional plane, a sphere, a torus, a disk, and a cyhnder.

A surface is any object that looks locally like a Pla_ne. If an ant were to 51§
on a large surface, it would think that it was sitting on a Zidlmensm_nal
expanse. This is not out of our realm of experlelilce.:—‘the.z e‘arth is a sph(}nca

globe, but it is so large that to its inhabitants it is 1n41st1nguxsha_1ble rgm
a flat plane. A clever ant may be able to disco-ver that its surface is not ;t
by venturing out and exploring the surface (just as_Columb}ls tried to do
when he sailed west toward “the Indies”), but standing still, it would have
no;tdeij important to be aware of the difference between ir'itrf'nsic and
extrinsic dimension. As the ant on a surface will tell you, it is locally
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2-dimensional—the intrinsic dimension of a surface is two, However, for
us to build a physical copy of this surface, the surface must live somewhere,
and the dimension of this enveloping space is the extrinsic dimension.
The sphere and the torus have an intrinsic dimension of two, but they
must live in 3-dimensional space, so their extrinsic dimension is three.
Shortly we will encounter bizarre surfaces that cannot be constructed in
3-dimensional s

that is why we say that surfaces are 2-dimensional.

Surfaces are characterized by local simplicity and global complexity. In
other words, up close, they are all identical. They all look like the Euclidean
plane. However, globally they can differ substantially. They can loop back
upon themselves, they can have holes, they can be twisted or knotted, and
so forth.

A sphere and a torus are examples of closed surfaces, They have no

nfinity, and they do not have any sharp

t the unlucky Columbus would not reach
the Indies, but would instead saj] off the edge of the ocean.

For simplicity, when we use the term “surface,” we will mean compact
surface. “Compact” is a technical term that means the surface is bounded
and contains all of its boundary curves, In other words, we will not
consider unbounded surfaces such as the 2-dimensional plane or a piece
of cylindrical tubing that runs infinitely far in both directions, When we
say that the surface must contain all of its boundary curves, we mean to
exclude surfaces such

it is the unit disk (x2 + ¥* < 1) with the boundary circle removed. A good
analogy is the frayed pant legs after the cuffs are removed—we need those
cuffs.

In 1882 Felix Klein (1849-1925) devised an ingenious way of constructing
surfaces.” He began with a polygon (imagine that it is made of a very
pliable rubber material). He created a surface by gluing sides of the polygon
together in pairs. For example, if we begin with a square, roll it up, and
glue together the two opposite sides, we obtain a cylinder (see figure 16.2).
Notice that if instead of rolling the square into a cylinder, we were to keep
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Figure 16.3. Making a torus from a square.

the entire figure in the plane and distort it until the opposite edges meet (we
need it to be made of a very soft rubber!), it would form a washer-shaped
annulus. To a topologist a cylinder and an annulus are indistinguishable.
To make it clear which sides will be glued and with which orientation, it
is common to decorate them with arrows. There are two different ways to
glue together a pair of sides—with or without a twist. So we use the arrows
to show the proper alignment. When we need to glue together more than
one pair of sides, we use different numbers of arrows or arrows of different
shapes to indicate which pairs attach to which. In figure 16.3 we glue both
pairs of opposite sides of a square together. We illustrate this by putting a
single arrow on one pair of sides and double arrows on the other pair. First
we glue one pair of sides to obtain a cylinder. Then, since the two end circles
have compatible orientations, we join these together to obtain a torus.
Some old arcade-style video games, such as Asteroids, employed this
representation of a torus. When the space ship flew off the side of
the rectangular screen, it would suddenly reappear on the opposite side
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Figure 16.5. A double torus.

(see figure 16.4). If it flew off the top of screen, it would rise from the
?ottom. Other games had other topological configurations. Pac-Man, for
Instance, was played on a cylinder. ’
We do not have to confine ourselves to squares when constructin
.surfaf:e_s. In figure 16.5 we see an octagon with four different pairs of sidef
identified (they are given by single and double arrows, and one and two
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Figure 16.6. A Mobius band.

triangles). To see the shape of the resulting surface, it helps to make ;n
additional cut diagonally through the octagon (we put three arrows 01f1 the
cuts so that we will be able to glue them back tr'Jgether. later). We de ]:rm
these two pentagons into two squares, each with an mdentatlon.dT ;se
squares resemble the square in figure 16.3, so after they are g‘lue they
each form a torus with a hole in it. Finally, we glue the two tori together
along the holes and we obtain a two-holed torus (or double torus).- { s
Klein proved that any surface can be represented as a polygon wit sides
glued together in pairs, but there may be many polygonil r‘ep’r’eser;tauon?
of the same surface. Fortunately, each surface has a “nice” polygona

representation such as our examples, and by cutting and reﬁglumg, any
polygonal representation can be transformed into the nice one.

In each of the examples we have seen thus far, the sides of the polygor.ls
have been glued without any twisting. In figure 1§.6 we have a square }11n
which a pair of opposite sides are glued together V\{lth a twist. Because;;c e
square is made of rubber, we can stretch it out,-roll it up as if weharehma rﬁg
a cylinder, and apply a half-twist before gluing. This shape is the well-
6bius band or Mébius strip. .

knf\‘?tr;:x;h the construction of the Mobius band 15 s'imple, it h}?s mar;y
surprising properties. Unlike the cylinder, . the Mobu}.s .band as onlﬁ
one side. An ant walking along the centerline of a Mob_ms band wo}lll

eventually return to the same location, but would be standlpg on the other
side. Said another way, we can paint a cylinder red on one side and l':ulue (})ln
the other, but a Mabius band must be all red or all blue. Also unhl;e the
cylinder, the Mébius band has only one boundazl'y. The ant sees an e g];)e :1(1)
the left and an edge to the right, but little does it know that they are bo

theTs}i:n (I?\detci{bgiis band is a favorite topological entity for mathematl}fs
enthusiasts. It has been reproduced by many sculptors and artists. The

RUBBER SHEETS AND CRAZY BOTTLES

Figure 16.7. Two famous Mébius bands: M. C. Escher’s Mébius Strip II (1963) and
the recycling symbol.

most famous artistic rendering is probably M. C. Escher’s (1898-1972)
1963 woodcut featuring (what else!) ants crawling on a Mébius band
(figure 16.7). It has appeared in literature—usually science fiction—such
as Arthur C. Clarke’s 1949 short story “The Wall of Darkness.”” It formed
the basis for Gary Anderson’s award-winning design in the 1970 Earth Day
contest to create the now-ubiquitous recycling symbol.* It has been used to
create conveyor belts and tape loops so that they wear evenly.

The Mobius band is even the basis of a magic trick with the mysterious
name of “Afghan bands” that dates back to at least 1882. A circus magician
holds up three loops of fabric, which he explains are cloth belts, The
problem, he laments, is that he needs belts for two clowns, the fat lady,

e takes the first band, rips it down the centerline
and produces the belts for the two clowns. He rips the second band in
the same way, but instead of two loops, he holds a single loop that has
twice the circumference of the original—the belt for the fat lady. Finally, to
get the belts for the twins, he rips the third loop and obtains two bels that
are linked together. The trick, as we see in figure 16.8, is that the loops have
twists in them (zero, one, and two half-twists, respectively). For maximum
effect, the fabric or paper should be flexible and be much narrower than

*Actually, at some point a variation of Anderson’s recycling symbol having three half-twists
Sprung up. Now it is common to encounter both versions.
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Figure 16.8. Afghan bands.

it is long so that the audience does not notice the twisting. Stephen Barr
suggests the following dramatic alteration.® Before the show, secretly apply
a flammable liquid to the centerline of a twisted loop. In the presence of tl_1e
audience, tack the edge of the loop to the wall and hold a match to the _fabrlc.
After a burst of flame, the loop falls apart into the desired conﬁgu_ratlor}.
The reader is encouraged to set the book aside to try these cutting tricks
and other variations (see appendix A for templates). Try giving 'Fhe bands
more than two half-twists. Try cutting a Mobius band along the hne'l/?f of
the way between the “two” boundaries. The author’s persor.aal fa'vonte isa
trick due to Stanley Collins.? Pass the band through a w_edchng ring before
giving three half-twists and gluing into a band. When this band is cut d(‘)WI"l
the middle it will have a knot in it, and inside the knot is the wedding ring!
The Mébius band is named after Mébius, but it was discovered almost si-
multaneously by Listing (it was Listing who first observed the mathematlc.:s
behind what would become the Afghan bands trick). Listing pubhshe-c-i %115
description of the Mébius band in 1861,'° four years earlier than Mébius
did."! Their correspondences and notes show that the first appearance was
in Listing’s hand (in July 1858), beating M&bius (September) by a few
mo’lill:}elsr:eason the Mobius band is not called the Listing band is that Mébius
was the first to make mathematical sense of the one-sidedness property
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Figure 16.10. The Mébius band is not orientable.

of the band. Today we call such surfaces nonorientable. There are several
ways of describing this phenomenon mathematically. Mébius showed that
it is impossible to divide the Mébius band into triangles, then orient the
triangles so they match up with their neighbors (see figure 16.9).

Later Klein defined orientability in a different way. Place a small circle
on the surface and pick an orientation. This circle is not drawn on one
side of the surface, but is part of the surface so it is visible on both
sides (on one side it is oriented clockwise, and on the other it is oriented
counterclockwise). Imagine that the surface is made of tissue paper and
the circle is drawn with a felt-tipped marker which bleeds through to
the other side. Klein called such an oriented circle an indicatrix. If it is
possible to slide this indicatrix around the surface in a such a way that
when it returns to its original location, the orientation is opposite, then the
surface is nonorientable. In figure 16.10 we show that the Mébius band is
nonorientable by sliding the indicatrix around the center circle.

Walther von Dyck (1856-1934), a student of Klein, gave yet another
definition. He put a movable coordinate frame, an x- and y-axis, on the
surface. If it is possible to move the coordinate frame around the surface in
such a way that the axes switch places, then the surface is nonorientable.
(One benefit of Dyck’s approach is that it easily generalizes to higher-
dimensional topological objects.)

It is interesting to note that mathematicians do not use the one-
sidedness property to define nonorientability. Although one-sidedness
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Figure 16.11. A curve in the plane is two sided, but one in 3-dimensional space has

no sides.

may seem to be equivalent to nonorientability, Klein and Dyck argued
that one-sidedness loses all meaning in higher dimensional spaces, but
nonorientability does not. Sides only make sense for surfaces living in
3-dimensional space. It is meaningless to refer to the inside or outside
of a surface—even a sphere—in 4-dimensional space.

This and other assertions we will make about high-dimensional spaces
are difficult to grasp. They require mental gymnastics that human beings
are not hard wired to perform. As the mathematician Thomas Banchoff
wrote, “All of us are slaves to the prejudices of our own dimension.”'?

To illustrate the perplexing claim that surfaces in 4-dimensional space
have no sides, we drop down a dimension from surfaces to curves. As we
see in the left-hand image of figure 16.11, for a given point on a planar
curve, normal vectors can point in only two possible directions (a vector is
normal to a curve if it is perpendicular to the line tangent to the curve).
So a planar curve has sides, and because it is impossible to move a normal
vector around the curve so that it returns pointing in the opposite direction,
it is two-sided. If the curve happens to be a simple closed curve—a closed
loop that does not cross itself—then we call these directions the inside and
the outside (actually, the seemingly obvious statement that every simple
closed curve has an inside and an outside is a deep theorem known as the
Jordan curve theorem).

On the other hand, for a curve in 3-dimensional space, there are
infinitely many normal directions at each point (as illustrated by the disk
of normal vectors in the right-hand image in figure 16.11). So in this case
the term “sides” has no meaning.

Similarly, at any point on a surface in 3-dimensional space, there are two
normal directions (a normal vector is perpendicular to the plane tangent to
the surface). For nonorientable surfaces it is possible to move a normal
vector around the surface so that it comes back pointing in the opposite
direction, so it is one-sided (see figure 16.12). For orientable surfaces, this
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Figure 16.12. In 3-dimensional space the Mobius band is one-sided and the torus

is two-sided.
1
[t )
-

Figure 16.13. A Klein bottle.

is not possible, so they are two-sided. But for a surface in 4-dimensional
space, there are infinitely many normal directions at a point, so, as for a
curve in 3-dimensional space, “sides” is meaning]ess. o

. The Mébius band is not the only nonorientable surface. In 1882 Klein
discovered another, this one having no boundary, and it now bears the
name the Klein bottle."? In figure 16.13 we depict it in terms of a square
with sides glued. We must glue opposite sides together; the left and right
pair is glued with a twist and the top and bottom pair without. To constrict
the Klein bottle, glue together the two similarly oriented sides to obtain a
cylinder. If we were to wrap this cylinder around like a torus, we would find
that the ends have opposite orientations. Instead, the cylin:tler must “pass

PFE . .
through” itself and come in from behind so that the end circles line up with
the same orientations.
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Figure 16.14. With a slight detour in the third dimension, we can allow two lines

to pass without crossing.

What do we mean by “pass through”? We do not mean it literally. The
Klein bottle is our first example of a surface that cannot be constructed in
3-dimensional space. When we say that the bottle passes through itself, it
actually passes by itself in the fourth dimension. To illustrate this baffling
concept, we again drop down a dimension. Suppose we wanted to draw two
nonparallel lines in the plane that have no point of intersection. Clearly this
is impossible, but if we were able to leave the 2-dimensional paper and use
the third dimension, then, just before getting to the point of intersection,
we could hop over the line (see figure 16.14). Thus, the two lines are
essentially planar, but would need a small amount of the third dimension.
Using this same technique we can construct the Klein bottle. When it comes
to passing the tube through itself, it should make a small hop over itself in
the fourth dimension.

Let us return to the square to create one final surface. This last one is the
most difficult to visualize. It is formed by gluing together the opposite sides,
but both with a twist (figure 16.15). Begin by taking the square piece of
rubber and deforming it so that it takes the shape of a bowl. We are careful
to keep track of which segments of the boundary should be glued to which
other segments. Continue to deform this bowl so that the sides that need
to be glued are aligned next to each other with the same orientation. Glue
one pair of sides together (in figure 16.15 we glued the sides marked with
double arrows). As we can see, we are in a bit of trouble—this gluing forced
the remaining pair of sides to be on opposite sides of the new surface. In
order to make the final gluing we must make use of the fourth dimension
to allow the surface to pass by itself. In figure 16.15 we give two different
views of this bizarre nonorientable surface called the projective plane.

The projective plane did not first appear in this context—as an object
created by the gluing of surfaces. Instead, as the name suggests, it was an
object studied in projective geometry, a geometric system in which any two
lines, even those that are parallel, meet at a single point. Klein and Ludwig
Schlafli (1814-1895) were the first to recognize that the projective plane
was nonorientable.
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Figure 16.15. The projective plane.

"A]_apendix A contains templates for making the cylinder, the torus, the
Mébius band, the Klein bottle, and the projective plane out of paper.

Klein gave one method of creating complicated surfaces from simpler
shapes—gluing the sides of polygons together in pairs. We now present
another way of constructing complicated surfaces from simpler ones. We
start with a sphere and glue onto it cylindrical handles to make orientable
surfaces and Mabius bands to make nonorientable surfaces.

As we see in figure 16.16, to add a handle to a surface, cut out two disks
and glue the ends of a cylinder to the boundaries of the holes. A sphere with
one handle is a torus. We build a double torus by adding another handle
and a g-holed torus by adding g handles to a sphere. ’

The number of handles on such a surface is intimately related to a
topological quantity called the genus. The genus of an orientable surface
.(with or without boundary) is the maximum number of nonintersect-
ing closed curves along which we can cut so that the surface is not
disconnected.

To illustrate this concept, consider a sphere. Cutting along any simple
closed curve will disconnect the sphere. This is another application of
the Jordan curve theorem—just as in the plane, a simple closed curve will
divide the sphere into two regions. So the genus is 0. On the other hand, it is
possible to cut a loop on the surface of a torus so that it remains connected
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Figure 16.16. A sphere with a handle (a torus).

to accomplish this feat of topol
In figure 16.18 we see the Mébius band deformed in this way. Notice

ghiitself along an entire line se -
ersection at the top of this Mgh; A o

Figure 16.17. Surfaces of genus 1, 2, and 3.

(see figure 16.17), but after this first cut, it is impossible to find another
such closed curve. So the genus of a torus is 1.

The genus of a sphere with handles is simply the number of handles.
A double torus has genus 2 and in general, a g-holed torus has genus 8.
The genus of a surface gives a rigorous way of defining Lhuilier’s count
of the number of “tunnels.” We could define the genus for nonorientable
surfaces, and some people do. However, because the genus is so intimately
related to the number of holes of a torus, it is not usually used in the
nonorientable case. ‘

Just as we can create an array of orientable surfaces by adding handles,
we can use a similar procedure to create nonorientable surfaces. In order to
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Figure 16.19. A sphere with a cross cap (creating a projective plane).

We now have two ways to construct orientable and nonorientable
surfaces. In the next chapter we will investigate how to apply Euler’s
formula to these surfaces. We will also present the classification theor?m
for surfaces that states that every closed surface can be made by adding

handles and cross caps to a sphere.

CHAPTER 17

ARE THEY THE SAME, OR ARE
THEY DIFFERENT?

It was very often repeated that Geometry is the art of
reasoning well on badly made figures; still these figures, not
to mislead us, must satisfy certain conditions: the proportions
can be grossly distorted, but the relative positions of the
various parts should not be disrupted.

—Henri Poincaré in the introduction to Analysis Situs!

One of the most important recurring questions in mathematics is: are
the two mathematical objects X and Y the same? In different contexts we
have different criteria for what “the same” means. Often, when we say
the same we mean equal, such as the expression 5-4+6—2% and the
number 18, or the polynomials x>+ 3x +2 and (x+2)(x+1). In other
circumstances the same may not mean equal. For a sailor navigating by
compass, two angles are the same if they differ by 360° (30° is the same
as 390°). A geometer may say that two triangles are the same if they are
congruent or perhaps if they are similar.

In topology we have a looser set of criteria for sameness than we do
in geometry. This is where the rubber-sheet analogy comes into play.
Intuitively, if one shape can be continuously deformed into the other, then
they are the same. Bending, twisting, stretching, and squashing the shape
does not change its topology. For example, the circle shown in figure 17.1 is
the same as the tangle to its right. On the other hand, puncturing a shape,
cutting it, or gluing it to itself will likely yield a shape that is topologically
different. A circle is not the same as a circle glued to itself in the form of a
figure eight.

In the first half of the nineteenth century mathematicians struggled
to classify those polyhedra that satisfy Euler’s formula—the so-called
Eulerian polyhedra. We came to the vague understanding that all polyhedra






