
1

FINAL PROJECT: MUSIC SERVER

Presented by: Elizabeth Ferreira & Matthew Visconti

EMT 2390L OPERATING SYSTEMS LAB

PROF: HAMILTON

December 7, 2016

2

TABLE OF CONTENT

INTRODUCTION ... 3

Raspberry Pi 3 ... 4

Mopidy .. 5

Mopidy- Spotify .. 6

Moped .. 6

Steps to Install the Music Server ... 7

Troubleshooting .. 9

Click to follow link

3

INTRODUCTION

The main goal of this project is to have a music server that will allow us to connect to our

favorite music on a more customized way. We will be using the Raspberry Pi 3 as a music server. This

project could be used as a music server in our living room or bedroom and just have it connected to

speakers (it could be done plugged in directly or Bluetooth) and have a touchscreen and it is an

embedded system that will specifically be designed to be our music stream and music player. To make

this happen we will be installing the following packages on the raspberry: Mopidy, Mopidy-Spotify and

Moped.

4

MUSIC SERVER

Raspberry Pi 3

The Raspberry Pi is a small wallet sized computer that plugs into virtually any monitor/TV that has an

HDMI port. All that is needed to run this little computer is a display, mouse, keyboard, 5v micro-USB,

pre-installed version on Raspbian on a microSD card and internet connection (optional). The Raspberry

Pi is mainly used in electronics projects, and as a basic desktop PC. We are using this Raspberry Pi as a

music streamer and player that will be using Mopidy, Mopidy-Spotify (backend extension) and Moped.

5

Mopidy

 Mopidy is an extensible music server written in Python and plays music from a local disk, Spotify,

SoundCloud, Google Play Music, and more. Mopidy is a python application that runs in a terminal or in

the background on a linux or Mac OS that have network connectivity and audio output. You are also able

to edit the playlist from any phone, tablet, or computer sing a range of different MPD and web clients.

Mopidy is a simple server that runs in the terminal or in the background on Linux computer or Macs.

Anybody can connect to your Mopidy server using their favorite MPD or webclient. Mopidy is also

hackable and can be changed within a development environment that will not affect the original Mopidy

that is currently installed. The virtualenv will wall off Mopidy and its dependencies from the rest of your

system. All development and installation of Python dependencies, versions of Mopidy, and extensions

are done inside the virtualenv. This way your regular Mopidy install, which you set up in the first step, is

unaffected by your hacking and will always be working.

A virtual environment is a tool to keep the dependencies required by different projects in separate

places. Also, is a tool to create isolated python environments that creates folders which contain all the

ecessary executables to use the packages that python projects would need.

6

Mopidy- Spotify

A Mopidy backend extension for playing music from Spotify. A Spotify Premium subscription is needed

in order from Mopidy-Spotify to work. A non-Facebook Spotify username will also need to provided in

order for it to work, and if the account was created using Facebook then you need to create a “device

password” to be able to use Mopidy-Spotify. Before starting Mopidy and using Mopidy-Spotify we need

to add our Sportify Premium username and password to our Mopidy configuration file.

Moped
A web extension for the Mopidy extensible music server that provides the user with an interface. It’s

created using a combination of both HTML5 & JavaScript and can be easily accesed on all web browsers

when the you type in your Mopidy server (http://localhost:6680/moped) into the URL. The Mopidy HTTP

frontend uses Web Sockets. Most modern browsers support this but not the default Android browser

(4.3 and older). To use Moped on Android you have to use a different browser like Firefox or Chrome.

Searching radio streams is still experimental.

The next image is the graphical interface of Moped to manage and control mopidy-spotify.

http://localhost:6680/moped

7

We were able to create a link from the terminal that will take us to Moped by using a bash script

Steps to Install the Music Server

1. Downloaded the stable version of Jessie that works with Mopidy.

2. Install Python 2.7 “sudo apt-get install build-essential python-dev python-pip”

3. Install Gstreamer “sudo apt-get install python-gst-1.0 \

 gir1.2-gstreamer-1.0 gir1.2-gst-plugins-base-1.0 \

 gstreamer1.0-plugins-good gstreamer1.0-plugins-ugly \

 gstreamer1.0-tools”

8

4. Install the latest release of Mopidy from source “sudo pip install -U mopidy”

5. Install backend extensions for Mopidy “pip search mopidy”

6. Install backend extension Mopidy-Spotify from apt.mopidy.com “sudo apt-get install mopidy-

spotify”

7. You may also install Mopidy-Spotify dependencies from Mopidy and install the package from

PyPl “pip install Mopidy-Spotify”

8. Edit the Mopidy configuration file “mopidy config” by adding our Spotify username and

password. [spotify]

 username = Elizabeth

 password = secret

9. Run Mopidy to check if the backend extensions are working and everything is logging.

10. Update the local library on our RPi “mopidy local scan”

11. Refresh the library “curl -d '{"jsonrpc": "2.0", "id": 1, "method": "core.library.refresh"}'

http://localhost:6680/mopidy/rpc”

12. Service management with system “sudo systemctl enable mopidy”

13. Install moped from PyPl “sudo pip install Mopidy-Moped”

14. Start moped while Mopidy is running in the background by typing in the HTTP

“http://localhost:6680/moped”

15. Make sure that Mopidy sees Moped is running and that web client shows both the local music and

Spotify playlists.

16. Create a bash script to be able to run the Mopidy-Spotify through Moped by doing this:

17. “sudo nano url.sh”

#!/bin/bash

Wget -0 - -q -t 1 http://localhost:6680/moped

18. Run mopidy and run url.sh to link and it’s ready to be used.

http://localhost:6680/mopidy/rpc
http://localhost:6680/moped
http://localhost:6680/moped

9

Troubleshooting

In this error screen the Spotify configuration were showing as disabled. To fix this error we opened the

Mopidy config file “sudo nano mopidy.conf” located in “.config/mopidy/mopidy.conf”

In the Spotify section it asks for username and password. We needed to open the Spotify account to

request a username that will be used in mobile devices. We used that unique username and created a

new password that will be used for our Mopidy and saved the file and restarted running mopidy.

For Mopidy to work as a client we needed to stop mopidy as a service using “sudo systemctl stop

mopidy” this allowed the MPD Frontend to be released and available for the Mopidy as client as well as

the HTTP frontend.

Why was this happening? Because Mopidy as a service was taking the place of the MPD and HTTP ports

and address and could only be used by one Mopidy.

MPD is an extension that provides full MPD Server implementations to make mopidy available to MPD

clients.

HTTP is an extension that lets you control mopidy through HTTP and web sockets for example from a

web client. Its bundled with mopidy and enabled by default.

10

This error that we encountered was caused when running the command for testing Mopidy to make

sure it was properly working. That command was “Tox” and it was testing the entire program even what

we do not need. To fix this problem we needed to specify the exact area that we need to test by running

“ Tox -e py27”

