1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

How to build applications with OpenCV inside
the Microsoft Visual Studio

Everything | describe here will apply to the C\C++ interface of OpenCV. | start out from the
assumption that you have read and completed with success the Installation in Windows
tutorial. Therefore, before you go any further make sure you have an OpenCV directory that
contains the OpenCV header files plus binaries and you have set the environment variables
as described here.

Pl ke = Builds » Officisd » OpenCVEZ » =
Inclede in hibrary = Lhare with = Burn Ne

Wites
Irdparty
e andicid
suments Bif
[F data
chures doc
Jeos mchpde
0
Iegroup miadubes

s, g b gt gk RVBCEITen ahie i, b b g

The OpenCV libraries, distributed by us, on the Microsoft Windows operating system are in a
Dynamic Linked Libraries (DLL). These have the advantage that all the content of the library
are loaded only at runtime, on demand, and that countless programs may use the same
library file. This means that if you have ten applications using the OpenCV library, no need to
have around a version for each one of them. Of course you need to have the dll of the
OpenCV on all systems where you want to run your application.

Another approach is to use static libraries that have lib extensions. You may build these by
using our source files as described in the Installation in Windows tutorial. When you use this
the library will be built-in inside your exe file. So there is no chance that the user deletes
them, for some reason. As a drawback your application will be larger one and as, it will take
more time to load it during its startup.

To build an application with OpenCV you need to do two things:

» Tell to the compiler how the OpenCYV library looks. You do this by showing it the header
files.

» Tell to the linker from where to get the functions or data structures of OpenCV, when
they are needed.

If you use the lib system you must set the path where the library files are and specify in
which one of them to look. During the build the linker will look into these libraries and
add the definitions and implementation of all used functions and data structures to the
executable file.

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 1/8

http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html#windowssetpathandenviromentvariable

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

If you use the DLL system you must again specify all this, however now for a different
reason. This is a Microsoft OS specific stuff. It seems that the linker needs to know that
where in the DLL to search for the data structure or function at the runtime. This
information is stored inside /ib files. Nevertheless, they aren’t static libraries. They are
so called import libraries. This is why when you make some DLLs in Windows you will
also end up with some lib extension libraries. The good part is that at runtime only the
DLL is required.

To pass on all this information to the Visual Studio IDE you can either do it globally (so all
your future projects will get these information) or locally (so only for you current project). The
advantage of the global one is that you only need to do it once; however, it may be
undesirable to clump all your projects all the time with all these information. In case of the
global one how you do it depends on the Microsoft Visual Studio you use. There is a 2008
and previous versions and a 2010 way of doing it. Inside the global section of this tutorial
I'll show what the main differences are.

The base item of a project in Visual Studio is a solution. A solution may contain multiple
projects. Projects are the building blocks of an application. Every project will realize
something and you will have a main project in which you can put together this project puzzle.
In case of the many simple applications (like many of the tutorials will be) you do not need to
break down the application into modules. In these cases your main project will be the only
existing one. Now go create a new solution inside Visual studio by going through the File »
New » Project menu selection. Choose Win32 Console Application as type. Enter its name
and select the path where to create it. Then in the upcoming dialog make sure you create an
empty project.

S e Bl B For';

The local method

Every project is built separately from the others. Due to this every project has its own rule
package. Inside this rule packages are stored all the information the IDE needs to know to
build your project. For any application there are at least two build modes: a Release and a
Debug one. The Debug has many features that exist so you can find and resolve easier bugs
inside your application. In contrast the Release is an optimized version, where the goal is to
make the application run as fast as possible or to be as small as possible. You may figure
that these modes also require different rules to use during build. Therefore, there exist
different rule packages for each of your build modes. These rule packages are called inside

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

the IDE as project properties and you can view and modify them by using the Property
Manger. You can bring up this with View » Property Pages. Expand it and you can see the
existing rule packages (called Proporty Sheets).

'Property Manager >3 x
E-gr Debug | Wind2
& Core Windows Libraries
A8 Unicode Support
-5 Release | Win32
38 Core Windows Libraries
id Unicode Support
il Whole Program Optimization

il Emarnple2

The really useful stuff of these is that you may create a rule package once and you can later
just add it to your new projects. Create it once and reuse it later. We want to create a new
Property Sheet that will contain all the rules that the compiler and linker needs to know. Of
course we will need a separate one for the Debug and the Release Builds. Start up with the
Debug one as shown in the image below:

‘Property Manager - Examplel -3 x
| @ Y| e
. =i Examiplel
= _.;:
i# Add New Project Property Sheet...

| %5 | Add Existing Property Sheet...

Clear Overridden Properties
¥ | Remove
5430 & Rename

L4 | Properties

Use for example the OpenCV_Debug name. Then by selecting the sheet Right Click »
Properties. In the following | will show to set the OpenCV rules locally, as | find unnecessary
to pollute projects with custom rules that | do not use it. Go the C++ groups General entry
and under the “Additional Include Directories” add the path to your OpenCV include. If you
don’t have “C/C++” group, you should add any .c/.cpp file to the project.

$(OPENCV_DIR)\..\..\include

a Cammon Propeies

- Additional Include Directones

$[OPENCY_DIRP. L nciuds

General Resoboe Susing References
User Macros Debug Information Format Program Database for Edit Ar
Wi+ Directories Commen Langusge RunTime Support
a CiCes Suppress Startup Banner Yes (fnalege)
'ﬁ'&'_""’_i _ Warning Level Levell (fW1)
| Optimizaticn Treat Warnings As Errors M (/W)

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 3/8

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

When adding third party libraries settings it is generally a good idea to use the power behind
the environment variables. The full location of the OpenCV library may change on each
system. Moreover, you may even end up yourself with moving the install directory for some
reason. If you would give explicit paths inside your property sheet your project will end up not
working when you pass it further to someone else who has a different OpenCV install path.
Moreover, fixing this would require to manually modifying every explicit path. A more elegant
solution is to use the environment variables. Anything that you put inside a parenthesis
started with a dollar sign will be replaced at runtime with the current environment variables

value. Here comes in play the environment variable setting we already made in our previous
tutorial.

Next go to the Linker » General and under the “Additional Library Directories” add the libs
directory:

$(OPENCV_DIR)\1lib

=]

Linker

Suppress Startup Banner Yes (/NOLOGO)
Genesal Ignore Import Library Mo
Input Register Qutput Mo
hﬂanHESTF“E PEFuserﬁeduechun
s 1 o Loy Drecores - D

QR Oy [IR o ISR PRSI - L T

Then you need to specify the libraries in which the linker should look into. To do this go to the

Linker » Input and under the “Additional Dependencies” entry add the name of all modules
which you want to use:

mimen Fropehel - a-prruv_::lr?]ld.ﬂ::pﬂuv_iﬂqp{n{ 231d b ape, .
Ganerl Ignare Al Default Likrane: He

User Mlacros Ignore Specific Library

CiCan Wadute Delmman Fle

Linker Acdd Module ba Azsembly

Gengrgl Emibed Maraged Resgusce File

Tt Farce Symbol References
hhanifest File B s o amis
mon Preperties - Additional Dependencies
eneral lgrare All DW Rl . .
ser Macros lgnore Specif] Additional Depandencies |7 |
fCrs Module Defif .
inker Add Modulel | epencov_corel31d.lib -
Geparal apency_imggrect3ld ik =
s Embed Mangl | o encv_highguiZ31d.lib
MP ey Force Sym apency_mi231d.likb
anifest File Delay Loaded | opency_videod3ld.ib
Debugging = BAzzermbly Lin ks
S}"Stﬂ“ 4 |
Optimization | .
Erbedded Tl E]nhtrrtmd values:

The names of the libraries are as follow:

opencv_(The Name of the module)(The version Number of the library you use)d.lib
A full list, for the latest version would contain:

opencv_core231d.1ib

opencv_imgproc231d.1lib

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 4/8

http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html#windowssetpathandenviromentvariable

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

opencv_highgui231d.1lib
opencv_ml231d.1lib
opencv_video231d.1lib
opencv_features2d231d.lib
opencv_calib3d231d.1ib
opencv_objdetect231d.1lib
opencv_contrib231d.1ib
opencv_legacy231d.1ib
opencv_flann231d.1lib

The letter d at the end just indicates that these are the libraries required for the debug. Now
click ok to save and do the same with a new property inside the Release rule section. Make
sure to omit the d letters from the library names and to save the property sheets with the
save icon above them.

fddetional Dependencies opency_core? 3L opency_imgproc? ¥ 1L bcopenoy_highs
Igneore All Default Librames T

Ignere Specific Defpult Librar
Madule Defindtion File

Additional Dependencs:

opency_core231.lib

Add Module 1o Assembly speney_smgprecdil ik
Embed Managed Resowrce Fide| || opency_highguil®l b
Fonce Symibol Feferences opency_milZ3lhib

opency_videol 31 ED

Delay Loaded Dils

You can find your property sheets inside your projects directory. At this point it is a wise
decision to back them up into some special directory, to always have them at hand in the
future, whenever you create an OpenCV project. Note that for Visual Studio 2010 the file
extension is props, while for 2008 this is vsprops.

I » Libraries » Documents » Visual Studio 2000 ¢ Projects »

Organaze = Sharewsth = Burn Mew folder

¢ Favorites > Documents library
24 Recent Places Demc
§ Drepbesx —
[Dewnleads ;
[bodak S Demoovcaproj. user

_?; Dermo.vcepraj

[dac =

i Dermeovexproj filters
4 Librasies 4 OpenCV_Debug props
e [t =] OpenCV_Release.props

Next time when you make a new OpenCV project just use the “Add Existing Property
Sheet...” menu entry inside the Property Manager to easily add the OpenCV build rules.

4 [Release | Wind2
28 Add New Propect Property Sheet...

%0 Add Existing Propery Sheet...

X Remove Dl

The global method

In case you find to troublesome to add the property pages to each and every one of your
projects you can also add this rules to a “global property page”. However, this applies only to

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 5/8

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

the additional include and library directories. The name of the libraries to use you still need to
specify manually by using for instance: a Property page.

In Visual Studio 2008 you can find this under the: Tools » Options » Projects and Solutions
» VC++ Directories.

- =
Oiptians I. g ﬁ
Ervviroairmesnt Platfoarne Show directanies for
Projects and Solutions [Win3z = [inchude fites -]
General Executable files
Busld and Bun

WC+=+ Directories Referarce files

SIVCInstaliDwhinclude

Y=+ Project Settings P ;:i:a::: :::::
Source Central SOWind cwes SdkDir]nclude Exchuds digsctoriss
Test Editar SiFearmenarkSDKDINinclede —

Datshaze Tool

In Visual Studio 2010 this has been moved to a global property sheet which is automatically
added to every project you create:

Property Manager - Micosoft.Cpp WindZ user x5 X
@t e e | d
4 7 Derma
4 5 Debug | Wind,

L Lrgers Llglar
| [Macresoft.CppWindLuser
i MR
'L Unicode Suppon

The process is the same as described in case of the local approach. Just add the include
directories by using the environment variable OPENCV_DIR.

Test it!

Now to try this out download our little test source code or get it from the sample code folder
of the OpenCV sources. Add this to your project and build it. Here’s its content:

1 #include <opencv2/core/core.hpp>

2 #include <opencv2/highgui/highgui.hpp>

3 #include <iostream>

4

5 using namespace cv;

6 using namespace std;

7

8 int main(int argc, char** argv)

o A
10 if(argc != 2)
11
12 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
13 return -1;
14 }
15
16 Mat image;
17 image = imread(argv[1l], IMREAD_COLOR); // Read the file
18
19 if(! image.data) // Check for 1invalid input
20 {

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 6/8

http://docs.opencv.org/_downloads/introduction_windows_vs.cpp

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

21 cout << "Could not open or find the image" << std::endl ;

22 return -1;

23 }

24

25 namedWindow("Display window", WINDOW_ AUTOSIZE); // Create a window for display.
26 imshow("Display window", image); // Show our 1image inside 1it.

27

28 waitKey(@); // Wait for a keystroke in the window

29 return 0;

30}

You can start a Visual Studio build from two places. Either inside from the IDE (keyboard
combination: Control-F5) or by navigating to your build directory and start the application
with a double click. The catch is that these two aren’t the same. When you start it from the
IDE its current working directory is the projects directory, while otherwise it is the folder
where the application file currently is (so usually your build directory). Moreover, in case of
starting from the IDE the console window will not close once finished. It will wait for a
keystroke of yours.

This is important to remember when you code inside the code open and save commands.
You’re resources will be saved (and queried for at opening!!!) relatively to your working
directory. This is unless you give a full, explicit path as parameter for the 1/0O functions. In the
code above we open this OpenCV logo. Before starting up the application make sure you
place the image file in your current working directory. Modify the image file name inside the
code to try it out on other images too. Run it and voila:

1

Command line arguments with Visual Studio

Throughout some of our future tutorials you'll see that the programs main input method will
be by giving a runtime argument. To do this you can just start up a commmand windows (cmd
+ Enter in the start menu), navigate to your executable file and start it with an argument. So
for example in case of my upper project this would look like:

1 D:
2 CD OpenCV\MySolutionName\Release
3 MySolutionName.exe exampleImage.jpg

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 7/8

http://docs.opencv.org/_downloads/opencv-logo.png

1/10/2015 How to build applications with OpenCV inside the Microsoft Visual Studio — OpenCV 2.4.9.0 documentation

Here | first changed my drive (if your project isn’t on the OS local drive), navigated to my
project and start it with an example image argument. While under Linux system it is common
to fiddle around with the console window on the Microsoft Windows many people come to
use it almost never. Besides, adding the same argument again and again while you are
testing your application is, somewhat, a cumbersome task. Luckily, in the Visual Studio there
is @ menu to automate all this:

-
Deino: Praperty Pages

Cenbgurstion: Fit:i;s-g ':] Plitfore | Actne{Windl) -
Actevel Debugl
Lemnmon Pl Debi = F"“‘"‘"”

+ Conqure T S -
Gersargl Al Configuestion: Fw Do
DT'_ ;D!"n:wl Command ST argetPath)
Yo++ D el
. o Command Aguaments examplelmage jpg |

- '.'u"tri:ing n‘r:ﬂtr_..' 'Sﬂm_lr:-.tli::

| i

Specify here the name of the inputs and while you start your application from the Visual
Studio enviroment you have automatic argument passing. In the next introductionary tutorial
you’ll see an in-depth explanation of the upper source code: Load and Display an Image.

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html 8/8

http://docs.opencv.org/doc/tutorials/introduction/display_image/display_image.html#display-image
http://code.opencv.org/
http://answers.opencv.org/

