
precipitation, and heating and cooling degree days. The zones are hot-humid, hot-dry, mixed-dry, mixed-humid, marine, cold, very cold, and subarctic. Building America prepared a guide that includes detailed definitions of each climate zone and a listing of all U.S. counties by state, indicating the climate region in which each county is located, *Building America Best Practices Series Volume 7.1: Guide to Determining Climate Regions by County* (Baechler et al. 2010).

The Building America Climate Regions

International Energy Conservation Code (IECC) Climate Regions

Building America and IECC Climate Zones

The table below shows the relationship between the Building America and IECC climate zones.

Building America	IECC
Subarctic	Zone 8 (only found in Alaska)
Very Cold	Zone 7
Cold	Zones 5 and 6
Mixed-Humid	4A and 3A counties above warm-humid line
Mixed-Dry	Zone 4B
Hot-Humid	2A and 3A counties below warm-humid line
Hot-Dry	Zone 3B
Marine	All counties with a "C" moisture regime

REFERENCES

Baechler, MC, JL Williamson, TL Gilbride, PC Cole, MG Hefty, and PM Love. 2010. Building America Best Practices Series Volume 7.1: Guide to Determining Climate Regions by County, http://apps1.eere.energy.gov/buildings/ publications/pdfs/building_america/ba_ climateguide_7_1.pdf

BECP. 2009. "Energy Code Climate Zones," Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Resource Center, http://resourcecenter.pnl.gov/cocoon/morf/ ResourceCenter/article/1420

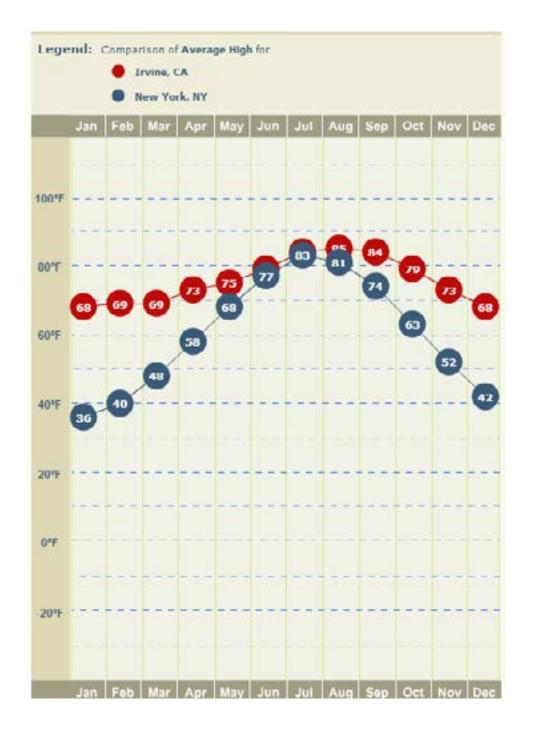
Briggs, RS; RG Lucas; and ZT Taylor. 2003. "Climate Classification for Building Energy Codes and Standards: Part 1 – Development Process, and Part 2 – Zone Definitions, Maps and Comparisons," *Technical and Symposium Papers, ASHRAE Winter Meeting*, Chicago, IL, January 2003.

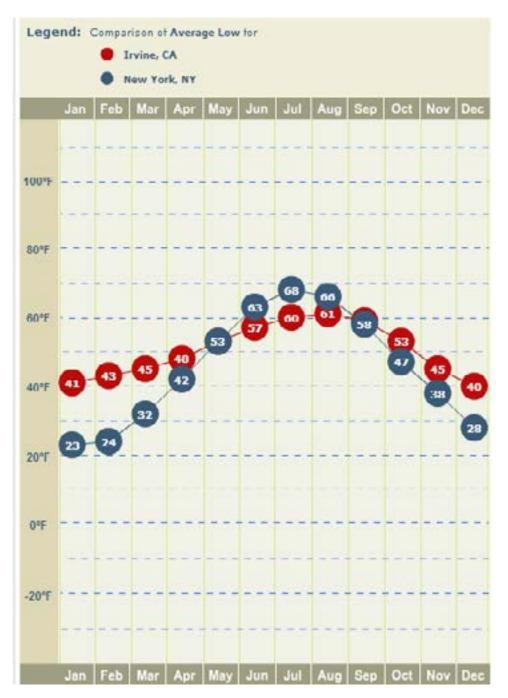
Statewide

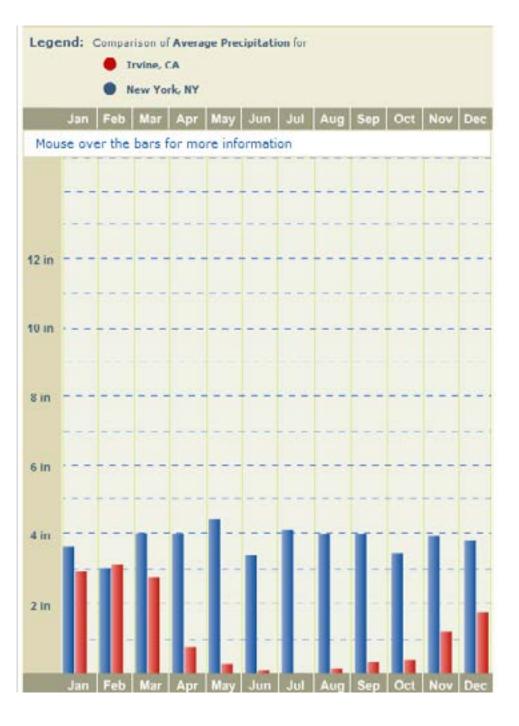
Heating Degree Day

	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	NORMAL
January	1063	1011	1226	1157	1324	1039	1009	908	1225	1393	1327	932	1188
February	998	855	998	1003	959	971	1171	954	970	1018	1123	836	1017
March	902	556	880	679	850	888	887	841	976	796	860	797	867
April	511	461	478	351	452	408	577	433	447	484	580	420	528
May	191	118	177	136	213	287	166	201	320	148	280	286	233
June	27	27	18	19	56	12	17	27	4	46	50	25	45
July	1	0	0	0	18	3	9	1	1	8	5	1	8
August	0	0	0	7	8	22	8	11	3	16	4	4	18
September	116	68	51	59	106	66	53	109	34	56	73	43	113
October	296	304	347	350	431	422	197	401	338	382	431	415	405
November	736	728	529	648	543	693	712	522	587	634	581	699	678
December	1012	850	839	1116	1044	982	1015	781	1079	1004	974	1052	1016
TOTAL	5853	4978	5543	5525	6004	5793	5821	5189	5984	5985	6288	5510	6116

Note: Normal is a 30-year degree day average value for the period 1971-2000.


Source: National Oceanic and Atmospheric Administration


*http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/


Annual Maximum Avg. Temperature	74.0 °F	72.0 °F	N/A
Annual Minimum Avg. Temperature	54.0 °F	51.0 °F	N/A
Annual Avg. Temperature	64.3 °F	61.5 °F	N/A
Annual Heating Degree Days (Tot Degrees < 65)	1,430	2,502	N/A
Annual Cooling Degree Days (Tot Degrees > 65)	1,201	1,229	N/A
Percent of Possible Sunshine	75	74	N/A
Mean Sky Cover (Sunrise to Sunset - Out of 10)	5	5	N/A
Mean Number of Days Clear (Out of 365 Days)	159	167	N/A
Mean Number of Days Rain (Out of 365 Days)	32	55	N/A
Mean Number of Days Snow (Out of 365 Days)	0	0	N/A
Avg. Annual Precipitation (Total Inches)	12.00"	17.00"	N/A
Avg. Annual Snowfall (Total Inches)	0.00"	1.00"	N/A

The data for Irvine, CA 92620 may also contain data for the following areas: Irvine, Northwood

Annual Heating Degree Days (HDD): A form of Degree Day used to estimate energy requirements for heating. Typically, heating degree days are calculated as how much colder the mean temperature at a location is than 65°F on a given day. For example, if a location experiences a mean temperature of 55°F on a certain day, there were 10 HDD that day because 65 - 55 = 10, according to the National Weather Service.

