6

Linear Perspective

 DrawingBASICS
BASICS APPLIED 212
=aspective drawings seen from a fixed vantage point create the most realistic, lifeBee wiews of the built environment and the urban landscape. On a two-dimensional - race, pictorial views of three-dimensional forms can be represented in a believIle manner using methods characterized by diminishing sizes and defined by coneging lines.
=ininary perspective design drawings or sketches show form, scale, texture, =u shapes, shadows, and spatial order. Presentation perspective design drawings $\bar{Z}=$ on a more precise character from these and related components. As a final - they may be refined into perspective renderings to complement and enhance z pesentation.

Im rtent of this chapter is to introduce the theory of and methods for constructed antectural perspectives. It stresses the importance of visualizing in parallel (one-
point) or angular (two-point) perspective from the plan and the elevation of an object. This, of course, comes with patience, perseverance, and most of all, practice.

The following are some of the important skills, terms, and concepts you will learn:
How to use one-, two-, and three-point perspectives How to change the pictorial effect by changing the perspective variables

Station point	Picture plane	Horizon line	Ground line
Vanishing point	Line of sight	Cone of vision	Distortion
Office method	Oblique lines	Perspective circles	Measurement systems

Linear Perspective Drawing

TOPICS: CONE OF VISION
Ching 2003, 91.
Topics: Diagonals, X-, Y-, Z-Axis, Station Point, Picture Plane, Horizon Line, Vanishing Points, Center of Vision, Vertical Measuring Line, Midpoint, Perspective Field, Perspective Viewpoint, Perspective Setup
Hanks and Belliston 1992, 16-19; 21-23.
Porter and Goodman 1985, 108-15.
Topic: One-Point Perspective Using 45° Diagonal LINES
Ching 2003, 99-102.
Topics: Vertical Vanishing Lines, Diagonal Lines, Oblique Lines, Oblique Vanishing Points, Diagonal Vanishing Points, 45° Vanishing Points.
Forseth 1980, 154-58.
Topics: One-point Office Method, Section
Perspective, Plan Perspective, Perspective Charts
Ching 1998, 234-36.
Lin 1993, 116-20, 124-34.

Topic: Three-Point Perspective
Gill 1980, Chapter 6.
Topics: Multiplying and Dividing, Circles, Circles
and Ellipses
Ching 2003, 116, 121.
Forseth 1980, 168-69, 170.
Hanks and Belliston 1980, 122-23.

Chapter Overview

After studying this chapter and doing the related exercises in the book's final section, you will understand important perspective terms, as well as how to construct one- and two-point perspectives. For continued study of the principles discussed in this chapter, refer to Forseth's Graphics for Architecture and Ching's Architectural Graphics.

（ ${ }^{\text {（ }} 99 \times \downarrow 6$ ）＂ $92 \times{ }_{u} L \varepsilon$

Kepot pesn swexboad dęndwos

When we see objects overlapping, a sense of depth and space is achieved. Isolated objects provide very little sense of spatial depth-if any.
＇suo！t！sod əן， －ənb！！｜qo｜｜e u！ןeo！！d！！｜ə səmoэəq чэле ле｜

 －n！！！ou әq pןnom әəәц7＇мə！＾uo－peəч e u｜

әә人 мориәу（®）
‘sumnjoэ əपł ॥е Ł0 səseq әцł səuэnoł łецł әu！！ əul se łulod əwes əuł Oł səus！

 moł s！əןరue әuł моןə se

 ¡e əןరue ənbi！qo əu। stuịd
 иәуең әдәм sәчэле до sәüә e ґ0 sude」6ołoud omł əsəu।

ハヨトコン

Webster's Dictionary defines "cue" as a hint or intimation. We pick up visual cues all the time. The cues may not always be exactly how we see the physical environment. In general, what we see can be called "perspective" cues. The most fundamental and efficient types of drawing cues are those that employ lines to record the edges of surfaces as we experience them in reality. These are called perspective cues because they represent the relationships between the edges of surfaces at a particular point in time and space - a particular perspective on the world. Perspective cues have been codified into three drawing systems: linear perspective, paraline perspective (used here to include axonometric and oblique systems), and orthographic perspective (multiview drawings). None of these is exactly how we see the world all the time. Each represents certain perceptual and cognitive realities - some combination of what we see and what we know about things.

Linear Perspective Cues

Linear perspective is most acutely experienced in places where long rectangular surfaces begin near the observer and recede into the distance, such as long, straight roads. The essential experience is that the parallel lines seem to come together in the distance. The edges of surfaces are represented by lines that follow the rules of linear perspective and each has a line grammar. One-point perspectives have vertical lines, horizontal lines, and perspective lines (lines that go to vanishing points). Two-point perspectives have vertical lines and perspective lines. Three-point perspectives have only perspective lines.

Paraline Perspective Cues

The Western perceptual schema is culturally biased toward linear perspective. To other cultures and in other times, a paraline drawing looked more "correct" than one using linear perspective. When things are small relative to our visual field, their edges and surfaces tend to retain their dimensions. The degree to which the edges vanish is so slight that our knowledge of their equality in length and angle can easily be more important than their adherence to the linear perspective. Paraline systems codify this view of reality. The edges of surfaces are represented by lines that follow the rules of paraline drawing conventions. The edges of parallel surfaces remain parallel and retain
 direct measured relationships to each other and the thing being represented. Verticals remain vertical and the other axes slope at specified angles.

Orthographic Perspective Cues

Orthographic perspective is less acceptable to our eyes and requires experience with its conventions to be able to read it. It represents a single object with multiple drawings and requires the ability to assemble the drawings in your mind. We experience things in orthographic perspective when their surfaces are relatively flat and we are standing directly in front of and facing them. As we move away from an object, our experience more closely corresponds to an orthographic drawing. The edges of surfaces are represented by lines that follow the rules of orthoghraphic drawing. Parallel edges remain parallel and retain direct measured relationships to each other and the thing being represented. Verticals remain vertical, horizontals remain horizontal, and the depth axis is represented by a point.

 －ə！！！əəds

7WH

W

7W＾

＇səue｜d pue seun｜｜ełuozu！

＇d \wedge pue＇ g d \wedge＇ $7 \mathrm{~d} \wedge$
dЭ
$7 \bigcirc$

7H

S7
dd
dS
NOILVINヨヨタ8

quilodpy

әu！ 7 6uunseew Ieoper
ruiod 6ulysuer

әueld punoe

әu！ 7 punces

10 әu！प पozuo

446！
oueld arme

Hulod uopas
WHE

Acceptable Distortion

Linear perspective formalizes through geometry a system that attempts to represent three-dimensional reality on a two-dimensional surface - that is, it attempts to place a portion of the visual field on a page. Because it is a closed system assuming a fixed, one-eyed observer, it has limitations that must be respected if the goal is to accurately represent perceived visual reality-for the drawing to "look right." The cube that is drawn with its lead edge coinciding with the vertical measuring line (VML-the line drawn through the center of vision) and centered vertically on the horizon line is the most accurate cube in the perspective. As the cubes move away from this location, they progressively become more distorted. The question, therefore, is how far from this location does a perspective retain sufficient accuracy so as not to be visually disturbing - what are the limits within which the perspective looks right?

Cone of Vision

For any given perspective setup, there is a finite arss surrounding the center of vision (CV), within which the perspective will look normal. The limits of this area are defined by a cone of vision (COV), whict starts at the station point. The cone of vision linis the way our eyes work and controls distortion with in the perspective system. A 60° cone is one thet extends 30° to either side of our line of sight. This illustration simultaneously shows a 60° cone a vision in both plan and perspective. For any mee suring point perspective setup, the cone of visor can be constructed to establish the area with which a perspective will "look most correct."

Diagrams and text: Courtesy of
William R. Benedict, Assistant Professor
California Polytechnic State University
College of Architecture \& Environmental Design
San Luis Obispo, California

Perspective Field $/ 90^{\circ}$ Horizontal Corner

The perspective field is the area defined by a circle whose center is located at the midpoint $(\mathrm{M}$) and whose $=$ cumference intersects the two horizontal vanishing points in a two-point perspective. The perspective field $=$ be used to control the near internal angle of horizontal rectangles to 90° or greater. When the angle becon= less than 90°, it does not look right. Any two lines intersecting at the circumference of the perspective field al create a 90° angle. Those intersecting beyond the circumference will create an angle of less than 90°, those intersecting within the perspective field will create an angle of more than 90°. Therefore, the perspecter field provides a guideline for establishing some limits within the linear perspective system.

Drawing: Church of the Light, Ibaraki, Japan $23.3^{\prime \prime} \times 16.5^{\prime \prime}(59.2 \times 41.9 \mathrm{~cm})$
Medium: Ink
Courtesy of Tadao Ando, Architect

The Picture Plane

This transparent interior perspective shows the wall with a cross slit behind the church's altar. The wall simulates a vertical picture plane through which one can capture the perspective view. An exception to the flat, two-dimensional picture plane is the spheroidal (similar to a sphere but not completely round) picture plane used with a fish-eye lens view.

Vasari Museum, Florence, Italy
$10^{\prime \prime} \times 8^{\prime \prime}(25.4 \times 20.3 \mathrm{~cm})$
Medium: Ink on Mylar
Courtesy of the University of Texas at Arlington
School of Architecture

A window is a fixed transparent vertical plane. When we look through a window, our eyes receive images of $t=$ three-dimensional objects we see. These images are translated onto a two-dimensional plane (the window) at an infinite number of points when our lines of sight intersect the window. Thus, the window becomes the picture plane. This drawing shows the viewpoint of an observer looking through a window. Note that the obsener's side with the widest upper-body dimension is always parallel to the picture plane (window).
－əu！punoub əut
 Көц।＇（suo！̣елөןə pue sue｜d） sбu！медр ग！чdедбочдо ！о

 e of mot buipung əlłt pue top e ot səonpaд גəresqo
 －биммедр әцł ио әи！！е ќq рә
 ןедиәо әч7 pue әэеция 6u！ －медр әчł оł деןnoppuәdıəd

 tou）səuejd pəןбue seu əハ！ఛכədsıəd łu！̣od－OMł \forall
小ejno！puədiəd səuejd Ku
 sќemje әл！ ＇əz！ p｜nom t！＇tuox u！əגəM ly annıọd əuł uo əz！s ent $=$
 －o！әи әцł pu！̣əq S！wo， ә૫ł әsneכəg＇łuḷod Guys әбләлиоэ ॥！М әue｜d өunpod＝ ןə\｜eied łou 6u！p！！nq oul

 ｜ełuozuou pue ןео！нoへ

You can manipulate a perspective image by changing certain variables. These include moving the picture plane, changing the orientation, changing the station point location with respect to the object, and moving the horizon line up and down.

 S! t! 'spıom дәцło ul 'əәeృuns st! fo ssə əəs noર

 'pəx!! u!̣eməd әu!! uoz!uоч әपł pue 'uo!̣eכol fu!̣d

'əuejd əınłग! ə૫ł Oł lכədsəય પł! M sə|ธue Ło łəs məu e səonpoגd əбиец๐ ио!̣еұиә!ио чэеヨ

Note that increasing the distance from the picture plane to the station point $\left(\mathrm{PP}_{4}\right.$ to $\left.\mathrm{PP}_{1}\right)$ causes a progressive enlargement of the perspective images that have a similar projection.

In this example, the station point location, the horizon line, and the orientation remain fixed. The picture plane location changes.

Drawing: The Pyramid at Le Grand Louvre, Paris, Franc= $30^{\prime \prime} \times 16^{\prime \prime}(76 \times 41 \mathrm{~cm})$
Medium: Acrylic
Pei Cobb Freed \& Partners / Michel Macary Architects Courtesy of Lee Dunnette, Architectural Illustrator

4

Distortion

Distortion, shown here in two-point perspective, is dependent on the spacing of vanishing points. A ver station point location with close vanishing points results in extreme convergence with a great amount of shortening (see 1 and 2). A very distant station point results in minimal convergence with very little fores ing. A more natural pictorial view is obtained by spreading the vanishing points apart (see 4 and 5). try not to spread them too far apart or a distorted flatness will occur. A good distance from the SP to three times the object height, or 1.80 to 2.40 times the width of the scene or object.

＂uede peəıds əıow are spuịod
 of del！w！s suo！t！puos पt！M 6u！uəみOUSə1Ot to

UO！̣OLS！
 әuojed！Z प！！ （山）カ1 16×19 ）„ $9 \varepsilon \times{ }_{\wedge}$ 七て иобәлО＇обәмsО әуе7 uon！ppe asnoH मəuıng ：GuḷMeı

Drawings: Student project by Lois McGinnis and Michael Patridk Shelby's Lake House - A project in CAD Courtesy of the University of Texas at Arlington School of Architecture

One-Point Perspective

The above one-point perspective seen at ground level is much more descriptive than its flat twodimensional elevation.

The three main types of perspectives are classified based on the drawing's primary vanishing points. Many drawings have secondary minor vanishing points. These building examples show that all horizontal lines that recede away from the observer's eye converge to one vanishing point. Therefore, they can be classified as onepoint perspectives. Note that in all three cases, one face of the building is parallel to the picture plane.

 JelkW uo＞u ：mipen y，

（ZOZ d əөs）
 әшes әsout $\ddagger 0$ әวuәбıəлиоэ рлем －umop 10 рлемdn э！＋suәәणелечо
 ఛе pessnosip）sən！̣כədsıəd ұu！od
 of｜ə\｜exed łou səperef łueu！wop
 әлец＇səןduexə әsәцł u！se＇səл！ －כədsıəd łu！od－oM1＇sən！̣əədsıəd孔u！̣od－omı se pə！！！sseן əq ues

 mous səןdmexə 6u！p！！nq əsəu1

әл！

\square

Comparing Two-Point and OnePoint Perspectives

In the two-point perspective views shown at left, note how two sets of parallel horizontal lines converge to the left and to the right. In reality, vertical lines remain vertical only in the middle row, where the line of sight is horizontal. Looking up or down from the horizon line results in the appearance of upward or downward convergence of the vertical lines.
Look at cardboard cartons (boxes) and try to visualize them moving around in space. Visualizing and drawing a cube anywhere in space in any orientation and noticing the emphasis on different planes as the cube moves around will enhance your perspective drawing skills. Other geometric forms can be drawn and derived from a rectilinear or cubic form: the human senses of sight and touch allow us to experientially model all kinds of shapes.

Photo: Rose Center for Earth and Space at the American Museum of Natural History (New York) by Polshek Partnership Architects

（w） $7 \times 19 \times 16$
о！чО＇К山ә्d＇әбе！！！＾uopernpz

Bird's-Eye, Eye-Level, and Worm's-Eye Views

Because several people can't occupy the same physical space simultaneously, people will see the same object from different angles if they all look at it at the same time. Once we vacate a physical space, another person can experience the same viewpoint. The eye-level line would change as an observer sits down, stands up, or stands on top of an object to view the the legs of the chair below as an observer moves higher and higher. The eye-level line is always at right angles to an observer's line of sight and is theoretically located at an infinite distance from your eyes.

Gu！̣sa．ıנи！Би！

 －Iəd әبł Gu！

خu！pue uəd ：mmpəW

」auuè uə ulats Kq umeıa
 I！puəd ：wn！paw
 е！шо！！

te umous se＇əueld purce әपł Mo｜əq mod 10 ｜əлө｜purnall te əq ueo мə！＾әКө－s \forall＇SMə！ィ＇feגnieuun yona＝
 pue əКә－s，шиом pəшes，
 OMI $\partial \mathrm{L}$＇uo！！！！sod bupues
 Əપł Mə！ィ ӘМ＇นed łsow＝

 Gu！̣uno əપł pue＇łnכ uo！！əəs uejd ou s！əəəપł＇əィоqе

 ue puełsдəpun K｜әұәןdmos 子ou səop очм（ұиә！ן）

әлоq＊سоぬ ұu！od－әuо

 （山）が16×19）„9を×»ゅて

Looking Downhill and Uphill

When the lines of sight of our bird's-eye and worm'seye views are parallel to an inclined plane, we are looking downhill and uphill. We see downhill and uphill perspective views in the natural landscape as well as in street scenes in the cityscape. Downhill and uphill views inside or outside a building's environment are characterized by stairs, escalators, or ramps.

Drawing: Student project by Stacey Wenger Barcelona studio, Barcelona, Spain Medium: Ink on Mylar
Courtesy of Washington University School of Architecture, St. Louis, Missouri

Drawing: The Sainsbury Wing: An extension to the National Gallery London, England
$28^{\prime \prime} \times 40^{\prime \prime}(71.1 \times 101.6 \mathrm{~cm})$
Medium: Pencil on vellum
Courtesy of Venturi, Scott Brown and Associates, Inc., Architects

Photo: The Spanish Steps leading to the Church of Trinità dei MiRome, Italy
’əઇцо чэеә моןəq pue əィоqе Кןеэ
 －ł！ p əuł＇suo！

 ＇əu！uOzuou ənuł əuł мoןəq əu！！uoz！̣ou əsןef e uo łuịod e łe usiue＾（doł）məị＾｜！！чumop əuł u！

I！！чd П pue ו！！чимод бu！̣ооך

6 Коә7 1 ग！uu！M ©

әппวә！！！ oכspues ues fo әбәøן wn｜｜əィ uo 춘 wng＝
（山）で乌し×で 0 し）－9
SMə！＾II！！dn pue I！！पumop oxspues ues

In a one-point perspective, a group of lines will vanish to one point, and this group will not be parallel to the picture plane. All vertical lines remain vertical, and all horizontal lines remain horizontal in the constructed perspective. The plan and the elevation of the room should always be traced to obtain exact dimensions.

1. The picture plane, the station point, and the horizon line locations are arbitrarily selected.
2. Locations are based on creating the desired pictorial effects. A horizon line below eye level was selected to reveal more of the ceiling detail.
3. From the station point, sight major elements in the interior, such as wall intersections, doors, and windows.
4. Where the lines of sight intersect the picture plane, drop vertical projection lines into the area of the perspective drawing.
5. Transfer true heights from the elevation to a vertical reference line in the picture plane. From these points, project back to the vanishing point. Connect proper projection lines, which will define wall, floor, and ceiling intersections.

Interior One-Point

As with two-point perspectives (discussed later), the office or common method is frequently used for one-poirt perspectives. At least one plane of the object in a one-point is always parallel to the picture plane. This plane is always perpendicular to the observer's line of sight. For interiors, the picture plane makes a sectional cut throug't the building or object where the interior space to be viewed begins. See the discussion on pages 216-219.

 100॥ әцł Ł0 әן

 рәлјоли！әq kew s！xе ןедиәә e әдәчм suo！penџ！s ədeospueן uequn
 ＇səכeds ıouəətu！ło！dəp of pəsn

The Office Method

The office or common or plan projection method for constructing an accurate two-point perspective is a traditional one. Both sets of horizontal lines are turned at an angle to the picture plane (thus the term "angular" for the two-point system). It is dependent on both the scale of the plan and the scale of the elevation.

1. In the top or plan view, place the outline of the object or objects (buildings) with an arbitrary orientation angle θ (based on the view desired).
2. Arbitrarily locate the picture plane and the station point in the plan view to create a distortion-free view. It is advantageous to have the corner of the object touch the picture plane; this establishes a convenient vertical measuring line.
3. Adjust the station point location if necessary. Its placement controls the cone of vision and distortion. Being too close or too far away can result in extreme distortion. To minimize distortion, try to set up a cone of vision that is greater than 30° but less the image's center of interest.

 łЧర！！

 －pəכəィ səu！！ןə｜eıed ı0 słəs ı0 uouəmouəyd ןeכ

＇əィ！əəәdsıəd әй 10ł spuịd bu！̣usiuen əuł əmoכəq stuịd uop
 әи！！uozụоч әЧł łכәsぇәu！Кәцł ！！！un səu！！дәэед

4. Project all sighting intersection points on the picture plane into the perspective in order to complete the perspective of the object. Hidden lines are optional.
Pages 230-32 show the step-by-step sequence for constructing a two-point perspective when both the building plan and the elevation are drawn at the same scale. Angular (two-point) perspective is characterized by angular planes (inclined to the picture plane) having their own separate vanishing points. All vertical lines remain vertical.

Drawing: T residence, Hayama, Kanagawa, Japan
Courtesy of lida Archiship Studio
Courtesy of lida Archiship Studio

Drawing Perspective Circles

To draw a circle or a portion of a circle accurately in perspective requires that you first draw its circumscribing square. With experience and practice, you will be able to derive from the square all the reference that is needed for quick sketches. However, as accuracy requirements and circle size increase, so does the need to construct additional points of reference to assist in constructing the circle. The following sections describe the four-, eight-, and twelve-point techniques for constructing circles.

The Four-Point Perspective Circle

Photo: St Mark's Cathedral Venice, Italy

The four-point technique locates the points of tangency between the circle and square.
© Marcus Chaw

 se|KW uo 》ㅣㅣ :mn!paW (w) $19 \times 9^{\circ} 0 \downarrow$) ${ }_{„} \downarrow て \times{ }_{\wedge} 91$

 ә્ગા!

 Ołu! s|euobe!p əut fo əuo fo feप лeəu əul әpwl
 ssəoold sịł u! pesn sןeuobe!p əu1 'sluiod ma

'stuilod ərow ingy $=$

Step 1

Once you understand linear perspective drawing, you can develop perspective views-from the rough to the finished form. In the profession of architectural illustration, this requires an understanding of the design of the project being illustrated, as well as skills in managing the balance, composition, and arrangement of a drawing's many elements. These drawings depict the process, from a rough layout to a line transfer to a detailed line drawing. The architectural illustrator must decide which way of representing a project will be most likely to lead the client to accept the design concept.

The project site was a narrow street/mall. The rough layout was done to determine the view and the relationship to the background building. The view of the final line transfer was done from a photograph supplied by the client to each competitor so that each scheme could be compared from the same fixed station point. Note the actual amount of background building that shows versus the perceived amount of the building that shows in the rough layout.
[ARChitectural Illustrator's statement]
Drawings: Peek \& Cloppenburg Department Store competition winner Leipzig, Germany
$14^{\prime \prime} \times 17^{\prime \prime}(35.6 \times 43.2 \mathrm{~cm})$
Medium: Full watercolor over pencil line transfer
Moore Ruble Yudell, Architects
Courtesy of Al Forster, Architectural Illustrator

Step 2

Step 3
 dןə 아 səәдБәр 6u！̣ie＾u！pə！！dde әq
 6uis \cap＇suo！̣＿）

 Guimeıp ןpuad „о јu！әu！әupeiq

е！шоп！eว＇OSspuey ues

40 K SI IIDנəP pud
 $!$ dəנs wo．l ıno－уро／q чбпо．
 ＇s．ID＇s．InБ！f uDวP IOf p

ұuәшdo｜əлә口 мə！＾

［1NGWGIVIS
 IOOH UIDU

 아＇K্｜IDUY pud＇saxoqiou BuIsn＇sdwids builinq＇bunau みdoad－s！วכDds วч！जिए моч moчs of＇puozas

 uәd u！әиор s！бu！әриал аи

［1NGWZIV1S

 วपІ MD．IP Of KPDว．I SDM ．IOłD．П －sn！！！әч৷ әu！！әчъ Кя puDч イq
 －рпри！әq рIПом ио！рьu！oju！
 Ч！！M UO！！D．IOqD／｜Oכ U！UMD．৷p

 －đо／Әләр ІОf UӘSOLد SDM əUO

əıoృəg

Drawing: Sears Tower Renovation Project, Chicago, Illinois
DeStefano \& Partners, Architects
Courtesy of Manuel Avila Associates, Architectural Illustrator

To establish the proportions and the size of the new, enlarged interior space the original space consisted of only ans floors, not three), we set ourselves as close to the entrance wall as we could to show the full extension of the room with all the new floor materials, new clad columns, and glass walls. We always try to show three sides of a room $=$ communicate enclosement (see p. 264). Although the entrance wall can only be partially seen, we emphasized it po= ence with the sunlight coming in.
[ARchitectural Illustrator's statement]

 sฉวృ！！

