MAT1275CO College Algebra and Trigonometry - Section D103
Exam 3 - Study Guide - Key

The following topics from Chapters 1.3.3-2.2.1 will be covered on Friday's exam. The bullet points here are based on the titles of the sections from the course text (and the titles of the course slides).

- Rational Expressions
- Adding and Subtracting Rational Expressions (Chapter 1.3.3)
- Complex Rational Expressions (Complex Fractions) (Chapter 1.3.4)
- Radical Expressions
- Simplifying Radical Expressions (Chapter 1. 4. 1-1.4.2)
- Rational Exponents (Chapter 1.4.3)
- Adding, Subtracting and Multiplying Radical Expressions (Chapter 1.4.4)
- Dividing Radical Expressions (Chapter 1.4.5)
- Complex Numbers (Chapter 1.4.6)
- Solving Linear Equations (Chapter 2.1)
- Solving Quadratic Equations
- Solving Quadratic Equations Using the Zero-Product Property (Chapter 2.2.1)

NOTE: We learned that $\sqrt{-1}=i$ so we will no longer write "DNE" and/or "not real" when we have the square root of a negative number. Be careful!

Exam 3 will include the following types of problems.

1. Three problems simplifying rational expressions
(a) $\frac{9 x+14}{x+7}+\frac{x^{2}}{x+7} \mathrm{x}+2$
(b) $\frac{x-4}{x}+\frac{4}{x^{2}} \frac{(x-2)(x-2)}{x^{2}}$ OR $\frac{(x-2)^{2}}{x^{2}}$
(c) $\frac{4}{m+3}+\frac{3}{m+4} \frac{7 m+25}{(m+3)(m+4)}$
(d) $\frac{8 y}{y^{2}-16}-\frac{4}{y-4} \frac{4}{y+4}$
(e) $\frac{\frac{1}{x^{2}-7 x+12}}{\frac{2}{x-4}} \frac{1}{2(x-3)}$
(f) $\frac{\frac{1}{a}+\frac{1}{b}}{\frac{1}{a^{2}}-\frac{1}{b^{2}}} \frac{a b}{b-a}$
2. Eight problems simplifying radical expressions

Simplify completely. Use absolute values and standard form $(a+b i)$ when appropriate. DO NOT list "DNE" or "not real" as an answer. Denominators of rational expressions should not contain radical signs nor imaginary numbers.
(a) $\sqrt{225} 15$
(b) $\sqrt{-225} 15 \mathrm{i}$
(c) $\sqrt{16 x^{2} y^{6} z^{1} 0} 4\left|x y^{3} z^{5}\right|$
(d) $\sqrt{\frac{24 p^{3}}{49}} \frac{2|p| \sqrt{6 p}}{7}$
(e) $\frac{\sqrt{48 a^{7}}}{\sqrt{3 a}} 4\left|a^{3}\right|$
(f) $32^{\frac{1}{5}} 2$
(g) $\sqrt[3]{64} 4$
(h) $-25^{\frac{3}{2}}-125$
(i) $-25^{-\frac{3}{2}}-\frac{1}{125}$
(j) $x^{\frac{3}{4}} \cdot x^{\frac{5}{8}} x^{\frac{11}{8}}$ OR $(\sqrt[8]{x})^{11}$ OR $\sqrt[8]{x^{11}}$
(k) $\left(x^{9}\right)^{\frac{2}{9}} x^{2}$
(l) $\frac{a^{\frac{1}{5}}}{a^{\frac{6}{5}}} \frac{1}{a}$
(m) $\sqrt{20}-3 \sqrt{5}-\sqrt{5}$
(n) $\sqrt{6}(1+3 \sqrt{6}) 18+\sqrt{6}$
(o) $(2-3 \sqrt{11})(4-\sqrt{11}) 41-12 \sqrt{11}$
(p) $\frac{4}{\sqrt{3}} \frac{4 \sqrt{3}}{3}$
(q) $\frac{2}{4-\sqrt{6}} \frac{4+\sqrt{6}}{5}$
(r) $(2+3 i)+(7-5 i) 9-2 i$
(s) $4 i(5-3 i) 12+20 i$
(t) $(3-\sqrt{-12})(5+\sqrt{-27}) 33-\sqrt{3} i$
(u) $\frac{3+3 i}{2 i} \frac{3}{2}-\frac{3}{2} i$
(v) $\frac{1+6 i}{6-i} i$
3. Four problems solving linear and quadratic equations.
(a) $8 x+10=4 x+2 x=-2$
(b) $3(2+x)-9=0 x=1$
(c) $\frac{2}{3} x+6=2 x=-6$
(d) $\frac{x+1}{4}+\frac{5 x}{12}=\frac{5}{6} x=\frac{7}{8}$
(e) $(2 m+1)(m+3)=12 m m=1, m=\frac{3}{2}$
(f) $(3 x-4)(4 x-3)=0 x=\frac{3}{4}, x=\frac{4}{3}$
(g) $9 x^{2}=121 x=-\frac{11}{3}, x=\frac{11}{3}$
(h) $u^{2}-5 u-14=0 x=-2, x=7$
(i) $2 x^{2}+30 x=-100 x=-5, x=-10$
4. One problem identifying whether or not an equation is linear (or quadratic)
(a) Is the following equation a linear equation?

- $2 y^{2}+4=2 y^{2}+5 x-2$ Yes
- $5 y+2 y+6=7 y+8$ No
- $2 y-2=4+6 y$ Yes
(b) Is the following equation a quadratic equation?
- $3 c^{2}=10 c-8$ Yes
- $25 q^{2}=16$ Yes
- $x^{3}+5 x-6=x^{3}+15 x$ No

5. One word problem similar to those from the "Exam 3 - Word Problems (Solving Linear Equations) Practice" document
