MAT1275CO College Algebra and Trigonometry - Section D103

Exam 3 - Study Guide - Key

The following topics from Chapters 1.3.3 - 2.2.1 will be covered on Friday's exam. The bullet points here are based on the titles of the sections from the course text (and the titles of the course slides).

- Rational Expressions
 - Adding and Subtracting Rational Expressions (Chapter 1.3.3)
 - Complex Rational Expressions (Complex Fractions) (Chapter 1.3.4)
- Radical Expressions
 - Simplifying Radical Expressions (Chapter 1. 4. 1 1.4.2)
 - Rational Exponents (Chapter 1.4.3)
 - Adding, Subtracting and Multiplying Radical Expressions (Chapter 1.4.4)
 - Dividing Radical Expressions (Chapter 1.4.5)
 - Complex Numbers (Chapter 1.4.6)
- Solving Linear Equations (Chapter 2.1)
- Solving Quadratic Equations
 - Solving Quadratic Equations Using the Zero-Product Property (Chapter 2.2.1)

NOTE: We learned that $\sqrt{-1} = i$ so we will no longer write "DNE" and/or "not real" when we have the square root of a negative number. Be careful!

Exam 3 will include the following types of problems.

- 1. Three problems simplifying rational expressions

 - (a) $\frac{9x+14}{x+7} + \frac{x^2}{x+7} \times +2$ (b) $\frac{x-4}{x} + \frac{4}{x^2} \cdot \frac{(x-2)(x-2)}{x^2} \text{ OR } \frac{(x-2)^2}{x^2}$ (c) $\frac{4}{m+3} + \frac{3}{m+4} \cdot \frac{7m+25}{(m+3)(m+4)}$

 - (d) $\frac{8y}{y^2-16} \frac{4}{y-4} \frac{4}{y+4}$
 - (e) $\frac{\frac{1}{x^2-7x+12}}{\frac{2}{x-4}} \frac{1}{2(x-3)}$
 - (f) $\frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a^2} \frac{1}{b^2}} \frac{ab}{b-a}$
- 2. Eight problems simplifying radical expressions

Simplify completely. Use absolute values and standard form (a + bi) when appropriate. DO NOT list "DNE" or "not real" as an answer. Denominators of rational expressions should not contain radical signs nor imaginary numbers.

- (a) $\sqrt{225}$ 15
- (b) $\sqrt{-225}$ 15i
- (c) $\sqrt{16x^2y^6z^{10}} \ 4|xy^3z^5|$
- (d) $\sqrt{\frac{24p^3}{49}} \frac{2|p|\sqrt{6p}}{7}$
- (e) $\frac{\sqrt{48a^7}}{\sqrt{3a}} 4|a^3|$
- (f) $32^{\frac{1}{5}}$ 2
- (g) $\sqrt[3]{64}$ 4
- (h) $-25^{\frac{3}{2}}$ -125
- (i) $-25^{-\frac{3}{2}} \frac{1}{125}$
- (j) $x^{\frac{3}{4}} \cdot x^{\frac{5}{8}} x^{\frac{11}{8}}$ OR $(\sqrt[8]{x})^{11}$ OR $\sqrt[8]{x^{11}}$
- (k) $(x^9)^{\frac{2}{9}} x^2$
- (1) $\frac{a^{\frac{1}{5}}}{a^{\frac{6}{5}}} \frac{1}{a}$
- (m) $\sqrt{20} 3\sqrt{5} \sqrt{5}$
- (n) $\sqrt{6}(1+3\sqrt{6})$ $18+\sqrt{6}$
- (o) $(2-3\sqrt{11})(4-\sqrt{11})$ 41 12 $\sqrt{11}$
- (p) $\frac{4}{\sqrt{3}} \frac{4\sqrt{3}}{3}$
- (q) $\frac{2}{4-\sqrt{6}} \frac{4+\sqrt{6}}{5}$
- (r) (2+3i) + (7-5i) 9 2i
- (s) 4i(5-3i) 12+20i
- (t) $(3-\sqrt{-12})(5+\sqrt{-27})$ 33 $-\sqrt{3}i$
- (u) $\frac{3+3i}{2i} \frac{3}{2} \frac{3}{2}i$
- (v) $\frac{1+6i}{6-i}$ **i**
- 3. Four problems solving linear and quadratic equations.

 - (b) 3(2+x) 9 = 0 x = 1
 - (c) $\frac{2}{3}x + 6 = 2$ x = -6
 - (d) $\frac{x+1}{4} + \frac{5x}{12} = \frac{5}{6} x = \frac{7}{8}$
 - (e) $(2m+1)(m+3) = 12m \ m = 1, m = \frac{3}{2}$
 - (f) (3x-4)(4x-3) = 0 $x = \frac{3}{4}, x = \frac{4}{3}$
 - (g) $9x^2 = 121 \ x = -\frac{11}{3}, x = \frac{11}{3}$
 - (h) $u^2 5u 14 = 0$ x = -2, x = 7
 - (i) $2x^2 + 30x = -100 \ x = -5, x = -10$

- 4. One problem identifying whether or not an equation is linear (or quadratic)
 - (a) Is the following equation a linear equation?
 - $2y^2 + 4 = 2y^2 + 5x 2$ Yes
 - 5y + 2y + 6 = 7y + 8 No
 - 2y 2 = 4 + 6y Yes
 - (b) Is the following equation a quadratic equation?
 - $3c^2 = 10c 8 \text{ Yes}$
 - $25q^2 = 16 \text{ Yes}$
 - $x^3 + 5x 6 = x^3 + 15x$ No
- 5. One word problem similar to those from the "Exam 3 Word Problems (Solving Linear Equations) Practice" document