MAT1275CO College Algebra and Trigonometry - Section D103 Exam 3 - Study Guide

The following topics from Chapters 1.3.3 - 2.2.1 will be covered on Friday's exam. The bullet points here are based on the titles of the sections from the course text (and the titles of the course slides).

- Rational Expressions
 - Adding and Subtracting Rational Expressions (Chapter 1.3.3)
 - Complex Rational Expressions (Complex Fractions) (Chapter 1.3.4)
- Radical Expressions
 - Simplifying Radical Expressions (Chapter 1. 4. 1 1.4.2)
 - Rational Exponents (Chapter 1.4.3)
 - Adding, Subtracting and Multiplying Radical Expressions (Chapter 1.4.4)
 - Dividing Radical Expressions (Chapter 1.4.5)
 - Complex Numbers (Chapter 1.4.6)
- Solving Linear Equations (Chapter 2.1)
- Solving Quadratic Equations
 - Solving Quadratic Equations Using the Zero-Product Property (Chapter 2.2.1)

NOTE: We learned that $\sqrt{-1} = i$ so we will no longer write "DNE" and/or "not real" when we have the square root of a negative number. Be careful!

Exam 3 will include the following types of problems.

1. Three problems simplifying rational expressions

(a)
$$\frac{9x+14}{x+7} + \frac{x^2}{x+7}$$

(b) $\frac{x-4}{x} + \frac{4}{x^2}$
(c) $\frac{4}{m+3} + \frac{3}{m+4}$
(d) $\frac{8y}{y^2-16} - \frac{4}{y-4}$
(e) $\frac{\frac{1}{x^2-7x+12}}{\frac{2}{x-4}}$
(f) $\frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a^2} - \frac{1}{b^2}}$

2. Eight problems simplifying radical expressions

Simplify completely. Use absolute values and standard form (a + bi) when appropriate. DO NOT list "DNE" or "not real" as an answer. Denominators of rational expressions should not contain radical signs nor imaginary numbers.

(a)	$\sqrt{225}$
(b)	$\sqrt{-225}$
(c)	$\sqrt{16x^2y^6z^{10}}$
(d)	$\sqrt{\frac{24p^3}{49}}$
(e)	$\frac{\sqrt{48a^7}}{\sqrt{3a}}$
(f)	$32^{\frac{1}{5}}$
(g)	$\sqrt[3]{64}$
(h)	$-25^{\frac{3}{2}}$
(i)	$-25^{-\frac{3}{2}}$
(j)	$x^{rac{3}{4}}\cdot x^{rac{5}{8}}$
(k)	$(x^9)^{\frac{2}{9}}$
(l)	$\frac{a^{\frac{1}{5}}}{a^{\frac{6}{5}}}$
(m)	$\sqrt{20} - 3\sqrt{5}$
(n)	$\sqrt{6}(1+3\sqrt{6})$
(o)	$(2 - 3\sqrt{11})(4 - \sqrt{11})$
(p)	$\frac{4}{\sqrt{3}}$
(q)	$\frac{2}{4-\sqrt{6}}$
(r)	(2+3i) + (7-5i)
(s)	4i(5-3i)
(t)	$(3-\sqrt{-12})(5+\sqrt{-27})$
(u)	$\frac{3+3i}{2i}$
(v)	$\frac{1+6i}{6-i}$

3. Four problems solving linear and quadratic equations.

(a) 8x + 10 = 4x + 2(b) 3(2 + x) - 9 = 0(c) $\frac{2}{3}x + 6 = 2$ (d) $\frac{x+1}{4} + \frac{5x}{12} = \frac{5}{6}$ (e) (2m + 1)(m + 3) = 12m(f) (3x - 4)(4x - 3) = 0(g) $9x^2 = 121$ (h) $u^2 - 5u - 14 = 0$ (i) $2x^2 + 30x = -100$

4. One problem identifying whether or not an equation is linear (or quadratic)

- (a) Is the following equation a linear equation?
 - $2y^2 + 4 = 2y^2 + 5x 2$
 - 5y + 2y + 6 = 7y + 8
 - 2y 2 = 4 + 6y
- (b) Is the following equation a quadratic equation?
 - $3c^2 = 10c 8$
 - $25q^2 = 16$
 - $x^3 + 5x 6 = x^3 + 15x$
- 5. One word problem similar to those from the "Exam 3 Word Problems (Solving Linear Equations) Practice" document