Chapter 1.2.8-1.2.9: Factoring Special Products and General Strategy for Factoring Polynomials

MAT 1275CO
Dr. Davie

Spring 2024

Factoring Differences of Squares

Recall, we learned a special rule about the product of conjugates $(a+b)(a-b)$.

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

We called this the Product of Conjugates. The reverse of this rule will help us to factor binomial in which two squares are being subtracted.

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

We call this the Difference of Perfect Squares.

Factoring Differences of Squares

Examples:Factor.

- $121 x^{2}-25 y^{2}$
- $x^{6}-9$
- $-49 a^{4} b^{8}+16 a^{2} b^{4}$
- On Your Own: $81 u^{2}-36 v^{2}$

General Strategy for Factoring Polynomials

Let's summarize a general strategy for factoring polynomials.

General Strategy for Factoring Polynomials

$\quad \stackrel{ }{\text { Binomial }}$

- Difference of Squares
$a^{2}-b^{2}=(a-b)(a+b)$
- Sum of Squares
Sums of squares do not factor.

Trinomial

- $x^{2}+b x+c$
$(x)(x)$
- $a x^{2}+b x+c$
\circ ' a ' and ' c ' squares

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

- 'ac' method

More than 3 terms

- grouping

Factoring Practice

Factor completely.

- $7 x y^{5}-7 x y$
- $4 x^{2}+8 b x-4 a x-8 a b$
- $40 x^{2} y+44 x y-24 y$
- $8 x^{4}-32 x^{3}-40 x^{2}$
- $u^{8}+2 u^{4}+1$

