Chapter 1.2.4: Powers of Monomials and Binomials

MAT 1275CO
Dr. Davie

Spring 2024

Powers of Monomials

Recall the following property.

Product to a Power Property for Integer Exponents: $(a b)^{m}=a^{m} b^{m}$

Examples:Simplify.

- $(2 x)^{5}$
- $\left(-3 x y^{4}\right)^{3}$
- On Your Own: $\left(-4 x^{2} y^{3} z\right)^{2}$

The Binomial Theorem

We will now consider powers of binomial expressions like $(x+y)^{6}$ and $(4 x-2)^{10}$.

$$
(x+y)^{n}=a_{0} x^{n}+a_{1} x^{n-1} y+a_{2} x^{n-2} y^{2}+\ldots+a_{n-1} x y^{n-1}+a_{n} y^{n},
$$

where the coefficients come from the nth row (counting from 0 of the Pascal's triangle):

Note: To get from one row to the next you add the two numbers above (or 1 in the case of the first and last number).

Power of Binomials

Examples:

- Find the coefficient of x^{3} in $(2 x-3)^{4}$.
- Find the coefficient of $x y^{2}$ in $(x-3 y)^{3}$.

