MAT 1275CO - Chapter 1.1.4 Problem Set

1. Simplify and write without using negative exponents.

(a)
$$3 \cdot 3^5 \cdot 3^{12}$$

(b)
$$x^2y^4 \cdot x^3y^6$$

(c)
$$(2x^2y)^4$$

(d)
$$x^4x^{12}$$

(e)
$$x^{-4}x^{12}$$

(f)
$$x^4x^{-12}$$

(g)
$$x^{-4}x^{-12}$$

(h)
$$\frac{w^6}{w^{15}}$$

(i)
$$\frac{w^{-6}}{15}$$

(j)
$$\frac{w^6}{w^{-15}}$$

(k)
$$\frac{w^{-6}}{w^{-15}}$$

(f)
$$x^4x^{-12}$$

(i) $\frac{w^{-6}}{w^{15}}$
(l) $(u^2v^2 \cdot 2u^4)^3$

(m)
$$2x(x^4y^2)^3$$

(b)
$$x y x$$

(e) $x^{-4}x^{12}$
(h) $\frac{w^6}{w^{15}}$
(k) $\frac{w^{-6}}{w^{-15}}$
(n) $\frac{n^{-3}(n^4)^2}{3m^{-2}n}$

(o)
$$\left(\frac{2q^3p^3r^4 \cdot 2p^4}{(qrp^3)^2}\right)^4$$

(p)
$$\left(\frac{4s^{-3}t^{-4}}{s \cdot s^2t^{-3}}\right)^{-2}$$

(q)
$$\frac{n^{-3}(n^4)^2}{3m^{-2}n}$$

(r)
$$(3a^4b^-6)(2a^2b^{-2})^2$$

(p)
$$\left(\frac{4s^{-3}t^{-4}}{s \cdot s^2 t^{-3}}\right)^{-2}$$

(s) $\left(\frac{3m^{-5}n^2}{4m^{-2}n^0}\right)^2 \cdot \left(\frac{mn^4}{9n}\right)^2$

2. A byte is a unit used to measure a computer's memory. The numbers of bytes in several units of measure are as follows.

- kilobyte 2^{10} bytes
- megabyte 2¹⁰ bytes
- gigabyte 2³⁰ bytes
- terabyte 2^{40} bytes

(a) How many kilobytes are in 1 terabyte?

- (b) How many megabytes are in 16 gigabytes?
- (c) Another unit used to measure a computer's memory is a bit. There are 8 bits in a byte. How can you convert the number of bytes in each unit of measure given in the table to bits? Can you still use a base of 2? Explain.

Critical Thinking

1. Can you use the Product of Powers Property to multiply 52 · 64? Explain.