MAT 1275CO - Chapter 1.1.4 Problem Set

1. Simplify and write without using negative exponents.
(a) $3 \cdot 3^{5} \cdot 3^{12}$
(b) $x^{2} y^{4} \cdot x^{3} y^{6}$
(c) $\left(2 x^{2} y\right)^{4}$
(d) $x^{4} x^{12}$
(e) $x^{-4} x^{12}$
(f) $x^{4} x^{-12}$
(g) $x^{-4} x^{-12}$
(h) $\frac{w^{6}}{w^{15}}$
(i) $\frac{w^{-6}}{w^{15}}$
(j) $\frac{w^{6}}{w^{-15}}$
(k) $\frac{w^{-6}}{w^{-15}}$
(l) $\left(u^{2} v^{2} \cdot 2 u^{4}\right)^{3}$
(m) $2 x\left(x^{4} y^{2}\right)^{3}$
(n) $\frac{n^{-3}\left(n^{4}\right)^{2}}{3 m^{-2} n}$
(o) $\left(\frac{2 q^{3} p^{3} r^{4} \cdot 2 p^{4}}{\left(q r p^{3}\right)^{2}}\right)^{4}$
(p) $\left(\frac{4 s^{-3} t^{-4}}{s \cdot s^{2} t^{-3}}\right)^{-2}$
(q) $\frac{n^{-3}\left(n^{4}\right)^{2}}{3 m^{-2} n}$
(r) $\left(3 a^{4} b^{-} 6\right)\left(2 a^{2} b^{-2}\right)^{2}$
(s) $\left(\frac{3 m^{-5} n^{2}}{4 m^{-2} n^{0}}\right)^{2} \cdot\left(\frac{m n^{4}}{9 n}\right)^{2}$
2. A byte is a unit used to measure a computer's memory. The numbers of bytes in several units of measure are as follows.

- kilobyte - 2^{10} bytes
- megabyte - 2^{10} bytes
- gigabyte - 2^{30} bytes
- terabyte - 2^{40} bytes
(a) How many kilobytes are in 1 terabyte?
(b) How many megabytes are in 16 gigabytes?
(c) Another unit used to measure a computer's memory is a bit. There are 8 bits in a byte. How can you convert the number of bytes in each unit of measure given in the table to bits? Can you still use a base of 2? Explain.

Critical Thinking

1. Can you use the Product of Powers Property to multiply $52 \cdot 64$? Explain.
